

Because They're Free of Contamination...

MALLORY CAPACITORS

Give Long, Continuous Service!

One reason why Mallory Capacitors deliver full rated capacity throughout their long life is the unusual care taken in production to prevent contamination, which is the source of corrosion and shortens the life of capacitors.
Even at high temperatures, Mallory Capacitors operate perfectly over extremely long periods of time. Tests consistently show dependable performance for more than 2000 hours at temperatures up to $185^{\circ} \mathrm{F}\left(85^{\circ} \mathrm{C}\right)$. Special design and meticulous production methods make such records possible.

Mallory Capacitors have set new long-life standards for the industry, yet cost no more. You will find it pays to rely on the complete Mallory Capacitor line . . . electrolytic, plastic tubular, paper, mica and ceramic.

See your Distributor for Mallory Precision Quality Parts at Regular Prices.

MALLLORY

I'LL TRAIN YOU FOR YOUR

 FCC LICENSEA Federal Communications Commission Commercial Operator's License puts you in line for a good job in Radio or Television Broadcasting, Potice. Marine, Aliation. Two-way, Mobile or Miero-wave Relay Radio. Mail coupon below for 64 page book FREE. It will give you complete facts about my NEW Communications course.

YOU BUILD THIS TRANSMITTER

with parts 1 send. With this Transmitter youl practice how to put a station "on the air." You perform procedues demanded of Broadcast Station Operators, conduct many experiments, make many practi-
cal tests.

YOU BUILD YOU MEASURE current this Transmitter Power Supply used in the basic experiments in $R F$ and $A F$ amplifiers, frequency multipliers, buffers, etc.
 amplitude and frequency modu-
lation circuits (put voice, music, etc., on "carrier signals" you produce). You learn how to get best performance

YOU
BUILD this Wavemeter and use it to determine frequency of operation, make other tests on transmitter currents. 100 Television Stations are operating in 35 states. Authorities predict there will be over 1,000 Television Stations. This rapid growth means new jobs. more jobs, grood pay for qualitied men all over the U. S. and Canada. Then add developnient of FM. Two-way Radio, Police, Marine. Aviaton and Micro-wave Relay Radio! Think what all this means! New jobs. more jobs for beginners! Better jobs better pay for experienced men!
Are you a beginner who wants steady work in this growing field? My NEW course can help you get an FCC License and prepare for the job you want. Are you ${ }^{a}$ man with some training in Radio or Radar, or a Licensed Operator? My NEW course modernizes, increases the value of

I TRAINED THESE MEN

 I am employed hy WKBO Have more than operator. salary since starting in Radio full time:"-A. HERR,
New Cumberland New Cumberlant, I'enna. "4 years atro, I was a book-
keeper with hand-to-mouth keeper with hand-to-mouth salary. Am now Radio
Engineer with ABC net.
 Rork. Ridgefield Park, N. J.

Servicing Training

 Also Offered by N. R.I. If vou prefer a good-pay job in Radio-Television Servicing or your own Television Servicing noney making ladio Tefevision Sour own
Sales and money making liado-Television Sales and
Sersice Shop, till train you al home. Ny famous Servicing Course also includes many Kits of Radio Piars. Youn use them to gett
TRACTCAL EXPERIE VCE PRACTICAL EXPERIENCE with circuits
common to Radis and Television. I atso common to Radis, and Television. I atso
show you how to inate $\$ 5, \$ 10$ a week or more EXTRA M1ONEY fixing neixhbors Radios while training. Full information in
mat fatpage booh. MAIL NOW-BOOK FREE

MR. J. E. SMITH, President, Dept. IAF

National Radio Institute, Washington 9, D. C.
Mail me your 64-page Book about Radio and Television Communications opportunities and training. (No salesman will call. I'lease write plainly.)
\qquad Address

City

\square Check if Veteran
Appreved Under G. I. Bill

my course includes IELEUSION

Course Is New! Different!

Mail coupon now for facts about my

 NEW, intensely practical course in KadioTelevision Communications. Let me send rou FREE book. Read outlines of 78 lesson texts written by leaders in Commumications and edited for you by my practical stalf. See the nine big kits of I'alts I send that "bring to life" theory you learn. Read about the Transmitter you build and operate, about the Electronic Multitester you get. All equipment yours to keep. My NEW course covers Theory thoroughly and you get Practical Experience blinding units like those shown at the left. It's backed by N. R. I. - the world's oldest and largest home study
Mail Coupon For Book FREE

Send today! See what my NEW course is like. Find out how I get you ready for a brighter future, better earmings, more security in Radio-Television. Send coupon now in envelope or paste on a postal. NO OBLIGATION. NO SALESMAN WILL CALL! My book, sent to vou FREE, tells the full story. J. E. SMITH, President, Dept. 1AF National Radio Institute. Washington 9, D. C

pindo

formerly RADIO-CRAFT
AUDIT GUREAS OFMBER

Hugo Gernsback, Editor-in-Chief
M. Harvey Gernsback, Editorial Director

Annual Television Number

CONTENTS

JANUARY, 1951

$$
\begin{gathered}
\text { Editorial (Page 19) } \\
\text { The Tele-Theate }
\end{gathered}
$$

Television (Pages 20-69)
Color Television Systems. by Fred ShunamanConvert your TV Set for Color Reception. .by Norman L. ChalfinLinearizing Circuits for Video Deflection... by Seymour D. UslanNew Trends in Television............. by Walter H. BuchsbaumIndustrial Closed Circuit Televisionon Receivers
by Henry O. Moxwell
.by Hugo Gernsback

Guided TV Bomb

Picture Tube List.
Charts Identify TVI
K-C Technicians Organize for TV
Servicing Picture Tube Circuits.
TV Station List.
Trends in Television I.F.s... Noll
Big Tube Conversions are Profitable
TV Progress Abroad.
Television Service Clinic.... Conducted by Walter H. Buchsbaum
Simple Master Antennas............... by Wilbur J. Hantz
TV Antenna Equipment.
Directory of TV Receiver Characteristics
Television DX Reports.
Electronics (Pages 70-72)
How an Electric Broin Works, Part IV
by Edmund C. Berkeley \& Robert A. Jensen 70
Theory and Engineering (Pages 74-82)
Electric Space Ships, Part $11 . .$. by Professor Hermann Oberth
Servicing-Test Instruments (Pages 94-107)
Fundamentals of Rodio Servicing, Part XXIII.... by John T. Frye
Television Service Notes............ by Michael L. Tortariello
Meter for Power Supply Checks Volts ond Amps.... by I. Queen
Audio (Pages $110-119$)
Electronics and Music, Part VII by Richard H. Dorf
Audio Feedback Design, Part IV....... by George F. Cooper
Broadcasting and Communications (Pages 120-122)
Doctor Always on Call with Radiopaging Unit
New Design (Page 123.124)
Departments

The Radio Month	10	Try this One	130
Radio Business.	14	Question Box.	134
New Devices.	84	Technotes	136
Association News.	125	Miscellany	138
New Patents.	127	People	143
Radio-Electronic		Communications	145
Circuits	132	Book Reviews	$14 /$

ON THE COVER: Model Naomi Riordan poses for the three-color camera in a demonstration of Du Mont closed. circuit 18 -mc color television. Insert shows her appearance on the screen, with breakup into the three primary colors.
Kodachrome by Avery Slack.

[^0]

From A to $Z_{\text {, from }} \mathbf{A d}$ miral to Zenith, this 16page book is jam-packed with complete replacement recommendations for critical TV capacitors in 497 television sets from The Technical Service Division of Sprague, world's. largest capacitor maker.

Get your copy FRE from your SPRACUE DISTRIBU. TOR or send IOe directly to Sprague to cover handling and mailing costs.

Remember!Avoidcostly call-backs in your service work by sticking to Sprague - the capacitors you can depend upon.

Let NATIONAL SCHOOLS, of Los Angeles, a practical Technical Resident Trade School for almost 50 years, train you for today's unlimited opportunities.

You are needed in the great modern Radio, Television and Electronics industry! Trained technicians are in constant and growing demand at excellent pay-in Broadcasting. Communications, Television, Radar, Research Laboratories, Home Radio Service, etc. National Schools Master Shop Method Home Study Course, with newly added lessons and equipment, can train you in your spare time, right in your own home, for these exciting opportunities. Our method has been proved by the remarkable success of National Schools-trained men all over the world.

You Learn by Building Equipment with Standard Radio Parts We Send You

Your National Schools Course includes not only basic theory, but practical training as well-you learn by doing. We send you complete standard equipment of professional quality for building various experimental and test units. You advance step by step until you are able to build the modern superheterodyne receiver shown above, which is
 yours to keep and enjoy. You perform more than 100 experimentsbuild many types of circuits, signal generator, low power radio transmitter, audio oscillator, and other units. The Free Books shown adove tell you more about it-send for them today!

NOW! NEW PROFESSIONAL MULTITESTER INCIUDED

This versatile testing instrument is portable and complete with test leads. Simple to operate, accurate and dependable. You will be able to quickly locate trouble and adjust the most delicate circuits. You can use the Multitester at home or on service calls. It is designed to measure AC and DC volts, current resistance and decibels. You will be proud to own and use this valuable professional instrument.
GET THE DETAILS - SEND THE COUPON

Instruction Material Are Up-to-date, Practical, Interesting

 National Schools Master Shop Method Home Training gives you basic and advanced instruction in all phases of Radio, Television and Electronics. Each lesson is made easy to understand by numerous illustrations and diagrams. All instruction material has been developed and tested in our own shops and laboratories, under the supervision of our own engineers and instructors. A free sample lesson is yours upon request-use the coupon below.TELEVISION TRAINING A complete series of up-to-the-minute Television lessons is an integral part of your course, covering
Here are just a few of the interesting facts you learn with the FREE SAMPLE LESSON

1. How radio receivers operate.
2. How the antenna circuit is constructed.
3. Converting signal currents into sound.
4. How the R-F transformer handles the signal.
5. How the tuning circuit functions. 6. The Radio "bands." all phases of Television repairing, servicing and construction.

APPROVED
FOR
VETERANS
Check
coupon below.

NATIONAL SCHOOLS

(no min
LOS ANGELES 37, CALIFORNIA EST. 1905

MALL OPPORTUNITY COUPON FOR PUICK ACTION

National Schools, Dept. 1-RE 4000 South Figueroa Street
(Mail in envelope or
:os Angeles 37, California
paste on penny postcard.)
Mail me FREE the book "Your Future in Radio-Television" and the sample lesson of your course. I understand no salesman will call on me.
NAME \qquad AGE

ADDRESS
CITY \qquad ZONE STATE
Check here if veteran of World War II

Thousands of Expert Technicians

 USE 解触逐 INSTRUMENTSTo successfully service Television．．

SUN RADIO services and carries warranty on．．．

－Admiral

－Bendix
－Capehart
－Emerson
－Farnsworth
－General Electric
－Hallicrafters
－Motorola
－National
－Philo
－R．C．A．
－Stromberg－Carlson
－Westinghouse

HICKOK ACCEPTANCE

There is more HICKOK TV Test Equipment in use today than all other makes combined．

You can build prestige and income when you use HICKOK instruments．Each model is built to the high HICKOK standard for accuracy and depend－ ability－Backed by the HICKOK guarantee．

HICKOK＂D＂Series display cases are now avail－ able，for nearly the entire HICKOK line of Radio－ TV instruments ．．．At no extra cost！

See the latest HICKOK models at your jobber＇s，or write today for information on the complete line of $A M, F M$ ，and TV instruments．

THE HICKOK ELECRICAL INSTRUMENT CO．

HICKOK ．．．The Standard
of Quality for over to years

Jobs are looking for men again! Qualified Technicians Needed for

 TELEVISION and FM SERVICINGTELEVISION SERVICEMEN \$100 PER WEEK Inside or outside men, with or with- \quad One of Washington's largest deleout car. We pay car expenses! ($\begin{aligned} & \text { vision ing for a thoroughly experienced. } \\ & \text { opening permanent job, }\end{aligned}$ Modern. air-conditioned shop! Va- $1 \begin{aligned} & \text { crew. } \\ & \text { averaging better than } \\ & \$ 150 \text { PER }\end{aligned}$
cation with pay! Group hospitalize- $\begin{array}{r}\$ 150 \text { PER WEEK. } \\ \text { Must have car. }\end{array}$ ton! 20% employs discount privileges! Time and one-hall for an overtime work! Wonderful opporunity for advancement!
 TELEVISION SERVICEMAN, TV experience prance, exllent pay perma-

CRED HOME STUDY

can help you to better jobs in servicing or Armed Services!

$\mathrm{A}^{\prime \prime}$DS LIKE these testify to the demand that exists for qualified TV technicians. As one well-informed industry spokesman puts it, "Technicians may soon be as scarce as certain tubes." With the electronics industry expanding, and with growing military demands rutting sharply into the available supply of skilled personnel, now is certainly the time to improve your electronics knowhow. And if you're headed for the Armed Services, your improved technical ability can be recognized and rewarded with interesting supervisory work at higher ratings in vital radar, navigadion, or communications units.

Anyone already in the field--if he is to get aheadcant depend on hit-and-miss methods for TV serve. icing. Practical knowledge is required. CREI home study offers just the practical course you need to
qualify for the well-paid technical jobs. Designed by leaching specialists - the same group which has made the CREI Residence School outstanding - this practical course is kept up-to-date through daily contact with CREI's affiliated retail sales-and-servicing stores (one of Washington's largest TV retailers).

Now is unquestionably the time to prepare. Il you want promotion, more money, and the kind of training that is respected by industry and the Armed Services, investigate CREI. Send for-and study -the free booklet offered below. The sooner you begin your training, the better off you'll be-in TV servicing work, or in military service. The cost is nomenad. for this training, the terms easy. Send for complate data-right now!

THE THREE BASIC CRED COURSES:

* PRACTICAL RADIO ENGINEERING

PRACTICAI TEIEVISION EN es radio-elecironics
(TACTICAL TELEVISION ENGINEERING

* TELEVISION AND professional radiomen

AND FM SERVICING
ALSO AVAILABLE AS RESIDENCE SCHOOL COURSES
CAPITOL RADIO
engineering institute
Dept. sic. 16th \& pascal 1927
Branch office: washington 10, D. C.
Branch Office: San Francisco, 760 Market St.

MAIL COUPON FOR FREE BOOKLET

FORCEFIL CONSUMER ADVERTISIMG BOOSTS YOUR SALES OF G.E TUBES!

Full-page, eye-catching ads like this appear regularly in

1ERE'S a tube "first" that will put - you first in volume, profits, and neighborhood prestige. Feature G-E tubes on your shelves; display them prominently on your counter. Your G-E tube distributor (better phone him, it's quicker) gladly will help you tie in with this national advertising. Or wire or write Electronics Department, General Electric Company, Schenectady 5, New York.

You cen pur yoner coulifience in -

GENERAL ELECTRIC

Use REAL commercial-type equipment to get practical experience

> Your future deserves and needs every advantage you can give it! That's why you owe it to yourself to find out about one of the most COMPLETE, practical and effective ways now available to prepare AT HOME for America's billion dollar opportunity field of TELE-VISION-RADIO-ELECTRONICS. See how you may get and keep the same type of basic training equipment used in one of the nation's finest training laboratories ... how you may get real STARTING HELP toward a good iob or your own business in Television-Radio-Electronics. Mail the coupon today for complete facts - including 89 ways to earn money in this thrilling, newer field.

ABOVE: Build and keep a real 16 INCH commercial TV receiver. Optional after completing regular training at slightadditional cost.
D.T.I., ALONE, INCLUDES BOTH MOVIES and HOME LABORATORY In addition to easy-to-read lessons, you get the use of HOME MOVIES - an outstanding training advantage - plus 16 big shipments of Electronic parts. Perform over 300 fascinating experiments for practical experience. Build and keep real commercial-type test equipment shown at left.

MODERN LABORATORIES

If you prefer, get all your preparation in our new Chicago Training Laboratories - one of the finest of its kind. Ample instructors, modern equipment. Write for details!

aCt NOW! MAIL COUPON TODAY!

DeFOREST'S TRAINING, INC., Dept. RE-1-H
2533 N. Ashland Ave., Chicago 14, III.
Without obligation, I would like your late News-Bulletin showing 89 ways to earn money in Television-Radio-Electronics ... and how I may prepare to get started in this thrilling field.

American Beautu

潘 ELECTRIC SOLDERING IRONS

are sturdily built for the hard usage of industrial service. Have plug type tips and are constructed on the unit system with each vital part, such as heating element, easily removable and replaceable. In 5 sizes, from 50 watts to 550
watts.

TEMPERATURE regulating STAND

This is a thermostatically controlled device for the regulation of the temperature of an electric soldering iran. When placed on and cannected to this stand, iron may be maintained at working temperature or through adjustment on bottam of stand at low or warm temperatures.

For descriptive liferature write

AMERICAN EIECTRICAL heater company DETROIT 2, MICH., U.S. A.

TV PIONEERS Hugo Gernsback, publisher of Radio-Electronics, and Isidor Goldberg, president of Pilot Radio Corporation, were presented scrolls by student members of the Institute of Radio Engineers and the American Institute of Electrical Engineers at New

Mr. Gernsback, right, accepts a scroll honoring his part in the first regular TV broadcasts from Emilio M. Pacifico, AIEE student branch chairman at NYU.

York University in recognition of their contributions to the development of television. The occasion was a demonstration by the students showing how television looked in 1928 when Gernsback's station WRNY began the first regular broadcasting of images in New York. The students used equipment similar to that made for the original station by Pilot Radio Corporation.

The scroll which Mr. Gernsback received was inscribed "Members of student branches of the Institute of Radio Engineers and the American Institute of Electrical Engineers at New York University College of Engineering present this scroll to Mr. Hugo Gernsback, publisher, Radio-Electronics, in recognition of his pioneering contribution toward the success of an historic television demonstration which took place on the same site twenty-two years ago in Amphitheatre, Philosophy Hall, University Heights, when station WRNY inaugurated regular daily television broadcast service." Robert Hertzberg, one of the technicians who helped with the original broadcast and now a writer well known to readers of technical magazines, was master of ceremonies.

ILLEGAL TV, the first case discovered by the FCC, was reported recently. Broadcasting intermittently from September 1 to October 19, the station was constructed and operated by the Tube Division of Syivania Electric Products, Inc., at Emporium, Pa. The station picked up broadcasts from channel 13 station WJAC-TV in Johnstown, Pa., and rebroadeast them on channel 7.

The transmitter was located on a mountain top near Emporium and was built at a cost of about $\$ 7,000$. Sylvania officials said they needed such facilities for their work. They did not apply for authority for the station because they knew the FCC could not grant it at the
time (due to the television "freeze") and believed they were not interfering with any other service.

The townspeople of Emporium agreed that the Federal authority must be obeyed, but were somewhat irked at the closing of the station because it left them with no TV service other than erratic fringe reception.

BRAIN DIAGNOSIS with sound waves was disclosed at a recent joint meeting of the IRE and the AIEE. Low-intensity ultrasonic waves are passed through the brain and are picked up on the other side of the patient's head with a detector. The waves are attenuated as they pass through cerebral tissues, but they pass undiminished through the cerebral fluids. The result is a "map" showing the fluid-filled parts of the brain. This technique is superior to X-rays which pass through tissue and fluid with nearly the same strength.

Stomach diagnosis of disease, including cancer, was reported at the annual clinical congress of the American College of Surgeons. Using improved apparatus, the technique measures the electrical potential difference between the empty stomach and some other part of the body. Certain stimuli, such as the ingestion of milk, are then applied to the stomach, and the response is observed. The change in electrical potential is different for different pathological states.

NEW OFFICERS have been elected by the Institute of Radio Engineers. Succeeding Raymond F. Guy as president

Ivan S. Coggleshall, new IRE president.
is Ivan S. Coggleshall, traffic manager of the Western Union Telegraph Co.'s overseas communications. The new vicepresident is C. F. Rybner, professor of telecommunications at the Royal Technical University of Denmark in Copenhagen.
608-FOOT TOWER, built at a cost of $\$ 93,000$ for radio station KHQ, in Spokane, Wash. crashed to the ground two days before it was to be completed. Built to almost three-fourths its planned height of 826 feet, the steel structure was to replace another tower snapped in half by a windstorm about a year ago.

IF YOU SERVICE TV, YOU KNOW THIS! Customers are quick to see imperfections. Much slower to hear them. Therefore premium-quality Hytron receiving tubes for the tougher TV jobs. At no extra cost! You gain also: Through fewer expensive service call-backs. Better customer satisfaction and confidence. More profits.

How does Hytron do it? By working closely with leading TV set manufacturers. By endless striving
to better already superior performance. By improved design...processing...inspection...testing.

Try Hytron TV receiving tubes: 1X2A, 5U4G, 6AG5, 6AL5, 6AU6, 6BC5, 6BG6G, 6BQ6GT, 6CB6, 6SN7GT, 6V6GT, 6W4GT, 12BH7, 25BQ6GT, etc. Also Hytron rectangular picture tubes: 14 BP 4 , $16 \mathrm{RP} 4,17 \mathrm{BP} 4 \mathrm{~A}, 20 \mathrm{CP} 4$. You pay no more for Hytron. But see the difference yourself...on the TV screen... on your cash register.

THEY COST PENNIES, BUT SAVE DOLLARS!
Order from your Hytron jobber today

HYTRON SOLDERING AID - 49¢ nef. Fork tip effortlessly, quickly unwraps "mechonically solid" ioints. Straddles wire, grips, unwraps, pulls it free. Guides new wire; holds it firm while soldering. Spade tip reams solder from lug hole; pushes other wires aside. Tips are hardensd, twist-proof, insulated, hard-chromed to shed solder. Tool handles like oencil. Reaches eight spots. Hus dozens of other uses.

HYTRON TUBE LIFTER - 15 é net. lift 'em all the e-a-s-y prybar way: Tubes (GT, G, standard, lock-in, metal). Vibrators and plugs (Jones, Amphenol) - and knobs. A natural for compact auto radios, etc. Slotted end lifts lock-ins, snap-in trimounts . . . easily, safely. Of stainless steel with comfortable rolled edges.

HYTRON TUBE TAPPER - 5 \& net. Handy combination pencil, eraser and tube tapper. Diszovers microphonism, shorts, ond opens in tubes, etc. Compact, nonmetallic, rugged. Doubles in brass for writing orders, etc.

HYTRON TUBE PULLER - 75 c net. Pull or insert 7.pin miniatures the e-a-s-y way. Neoprene rubber puller works by suction and friction on top of tube. Positive grip Reaches tight spots. Another Hytron time-temper-and money saver.

- 2 rron

HYTRON AUTO RADIO TOOL 24 ¢ net. Substifutes for control cables of universal auto radio. Quickly, precisely furns set en/off, tunes, adjusts volume and tone, e-aligns dial. Square also fits splines. Vee fits spade and other key fittings. Minimum backlash. Compost Bright-xins plated Non rolling large handle for fine adjustments.

servicimen
 stavitemen

HYTRON PIN STRAIGHTENERS 7-Pin and 9-Fin - 55 f net θ a You merely press thbe aently into Hytron Straightener untill button bas Hyro Straightener untio buton base seot squarely. Presto, pint are straight! Fast...
safe. Avoiding one broken tube poys for afe. Avoiding one broken tube poys for Straightener twice ave-. Precise, stainlesssteel insertion die. Comfortable knurled oluminum holder. For hand, bench or fube tester use.

TV NETWORKS may have to share time more equally in communities having only a small number of TV outlets if rules proposed by the FCC are put in effect. In one case, an FCC survey showed that NBC, in one sample week, furnished more network programs to seventeen one-station communities than the other three networks using the same coaxial cables combined.

The proposal would limit the number of hours a station could take from any one network, and this would depend on the number of stations serving the same area.

SHIP COLLISIONS will be reduced by a new method of radar computation developed by Capt. Edward C. Holden, U.S.N.R. Failure of radar officers to determine accurately the course and speed of radar targets and evaluating the targets mentally was partly responsible for the 363 ship collisions during the year ending July 1.

Capt. Holden's new method requires an accurate plot of the target as seen on the radar screen and helps to determine the course and speed of the target. The plot shows the dead reckoning of the observing vessel as well as the course and speed of the target and the distance between the two. Five-minute checks, made possible by special scales on the plotting board, enable the officer to determine how close the vessels will pass each other and the exact time.

HIGH DEFINITION system for black-and-white television was sulmitted to the FCC by the General Electric Co. Robert B. Dome, G-E engineering consultant, stated that the system will provide upward of 50% increase in horizontal detail when incorporated in transmitters and receivers. Reception by present TV sets would not be affected.

The system provides for the sending and receiving of fine and super-fine detail alternately. Since all precision equipment is at the transmitter, receivers using the system would be relatively low in cost and easy to adjust and maintain, although several more tubes are needed than in present sets.

CLASSROOM TV, now in its third year in Philadelphia public schools, has been so successful that thirty states and four foreign countries have asked the Philadelphia school board how to start educational programs of their own.

The city's three commercial stations broadeast unsponsored, school-planned programs to 200,000 students who look in on 16 -inch or larger sets provided by the Home School Council. There are now 40 sets in various elementary and high schools in the city and 60 more in suburban areas.

The children themselves participate in some of the programs which take up four hours a week of school time in half- to one-hour programs. Among the billings are Encyclopaedia Brittanica movies, a "science is fun" program, and others dealing in city government, local, national and world affairs.

ROBERT B. DOME, electrical consultant for the General Electric Co. will be awarded the Morris Liebman Menorial Prize for 1951 by the Institute of Radio Engineers for his contributions to intercarrier TV reception, wide-band phase-shift networks, and various innovations in FM receiver circuits.

Alan B. MacNee, brilliant young assistant professor of electrical engineering at the University of Michigan, will receive the Browder J. Thompson Prize for his paper "An Electronic Differential Analyzer," published in the November, 1949, Proceedings of the IRE. This award is given annually to the author under thirty years old for that paper
recently published by the IRE' which is the best combination of technical contribution and presentation of the subject.

The Harry Diamond Memorial Award, given to persons in government service, will be presented to Marcel J. E. Golay of the Fort Monmouth Signal Corps Laboratories for his contributions to the Signal Corps research program, and for work with the infra-red-radio gap.

Willis W. Harmon, associate professor at the University of Florida, will receive the Editor's Award, established to stimulate good English in technical papers, for his paper "Special Relativity and the Electron", published in the November, 1949, Proceedings of the IRE.

\star The crown jewel of dynamic microphones. See it, handle it - use it on highest quality recording, public address or broadcast work. New beauty, new styling, new utility and new performance make the Turner Aristocrat the finest of the fine. Use it anywhere, indoors or out - in hand, on stand, suspended, or concealed in stage settings. The Aristocrat is quickly and easily detached from ball swivel coupler for hand use. Non-directional polar pattern picks up sound from any direction. Equally effective for individual or group pickups with wide range, high fidelity reproduction of voice or music. Its high output dynamic generator requires no closely associated auxiliary equipment for outstanding results. Built of finest materials with flawless workmanship, each unit is laboratory calibrated to insure specification standards . . . Write for complete details.

THE TURNER COMPANY

933 17th Street N. E., - Cedar Rapids, lowa EXPORT: Ad. Auriema Inc., 89 Broad Street, New York 4, N. Y.

Mictophones ar turner
 Technicians New OVER/UNDER MAMmB? SOLDERING GUN

For ticklish T'V soldering, there's no tool like the new 135-watt Weller Gnir. Dual spotlights eliminate shadows. Precision balance assures accurate soldering. Long length reaches deep into chassis. 5 -second leating saves time and current. Your Weller Gun pays for itself in a few months.

Check This Exclusive Combination of Features

- 5-SECOND HEATING -No waiting. Saves power.

- OVER/UNDERDESIGN-Tube construction gives bracing action to tip, and improves visibility.
- DUAL SOLDERIITE—Prefocused spotlights completely eliminate shadows-let you see clearly. - LONGERREACH-Slides easily into the most complicated set-up. Reaches tight corners.
- COMPACT DESIGN-Streamlined and precision balanced for delicate "pin-point" soldering.
- TRIGGER-SWITCH CONTROL-Adjusts heat to the job. No need to unplug gun between jobs.
- DUAL HEAT - Single heat 100 watts; dual heat 100/135 watts; 120 volts, 60 cycles. Handles all light-duty soldering.

See new Model WD-135 af your disfributor, or write for bullefin direct.

- SOLDERING GUIDE. Get your new copy of "Soldering Tips"-revised, up-to-date and fully illustroted 20-page booklet of practical soldering suggestions. Price loc at your distributor, or order direct. 828 Packer Street, Easton, Pa.

Merchandising and Promoticn
Jensen Industries, Inc., is issuing a colorful new nylon-needle counter display card. The display holds 12 needles with sapphire or osmium tips. The needles

come in three sizes: standard for 78 r.p.m.; microgroove for 45 and $331 / 3$ r.p.m., and all-purpose for all three speeds. Display and needles are available through distributors or directly from the company.
Shure Brothers, Inc.. has a new cardboard sleeve which holds five phonograph pickup cartridge cartons. The

sleeve permits neat arrangement and easy stock rotation. The company believes this is the first cardboard container sleeve ever devised for pickup cartridges.
RCA Tube Department has shipped the

1951 edition of its pocket Reference Book to tube and parts distributors for issue to service dealers, engineers, technicians, and purchasing agents. The book contains electronic information as well as a diary, calendar, memo, address book, and worid atlas. A feature of the new edition is an article on TV trouble shooting by John Meagher, RCA Tube Division's TV specialist.
Electrovox Co., Inc., has introduced a new aid for phono servicing-a pocket manual with a summary of all phonographs by year, model number, cartridge, and needle. It lists cartridges with drawing's and installation notes. Finally the manual includes a selection of 13 basic needles which cover about 90% of replacement demand. Complete with the needles, the condensed Walco Master Control Index, for service technicians is priced at $\$ 10$.

Production

The RTMA reported that TV sets in October were produced at an all-time high rate of 203,462 per week, making a monthly total of 813,851 . For the first ten months of 1950 production reached $5,777,610$ TV sets.

The 10 -month total on radio production in 1950 was $11,481,823$. A breakdown of this figure shows $6,624,484$ home radios, $3,357,544$ auto radios, and $1,499,795$ portables.

Servicing Business

RCA Service Co. president, E. C. Cahill, recently stated that an additional 10,000 service technicians will be required to install and service the $2,000,000 \mathrm{TV}$ sets produced and sold in the last few months of 1950 . He pointed to the incredible growth of the industry, the length of time required to train competent TV technicians, and the drain of defense and government agencies as the three main problems facing the servicing industry. RCA, he explained, is attempting to combat the increasing shortage of technicians by expanding its training program.

The number of homes with radio sets was $41,500,000$ as of July $1950-m o r e$ than 95% of all U. S. homes. About four out of ten homes own more than one set. The total number of radio sets in use is estimated at about $85,000,000$. They are served by more than 2,000 AM stations and 500 FM stations.

New Plants \& Expansions

Raytheon Manufacturing Co.'s new pilot plant in Quincy, Mass., is now in production. Operated by the company's receiving tube division, the plant manufactures miniature and subminiature tubes for military requirements.
Workshop Associates, Inc., Needham Heights, Mass., moved to a new factory. The new plant will triple the TV antenna production capacity.
Radio Receptor Co., Inc., purchased a 90,000 -square-foot factory building in Brooklyn, N. Y. The new four-story concrete building will be used in addition to the company's present $50,000-$ square-foot plant to step up production of radio and electronic components.

The RAYTHEON Bonded ELECTRONIC TECHNICIAN PROGRAM provides four compelling ways to create customer confidence-Certificates, Identification Cards, Creed Displays and Decals. Bonded Dealers who use these service-business builders to identify themselves as capable, dependable technicians are finding them positive protection against the recent attacks on the integrity of Television and Radio Service companies.

If you're a Raytheon Bonded Dealer, prominently display your new 1951 Certificate_be sure your men use their Identification Cards. Ask your

Raytheon Distributor for more Creed Displays for window and counter use, and get enough Bonded Decals to adorn every window and door. These Bonded pieces are as important to your business as the tools in your kit.

If you're not a Bonded Dealer, better get in touch with the Raytheon Distributor in your locality. Find out if you can qualify for the Bond! If you can, this great program that cash-protects your 90-day guarantee on TV and Radio repairs is yours absolutely free, because the Bonded Program is Raytheon's intestment in your future!

antitow

HERE ARE MORE WAYS TO INFLUENCE CUSTOMERS! RAYTHEON'S TERRIFIC COLLECTION OF

 SALES AND SERVICE AIDS!ILLuminated test pattern clocks - metal outdoor signs e edgelighted SIGNS - DUMMY TUBE CARTONS - DISPLAYS - JUMBO TUBE CARTONS - SHOP jackets - stationery - repair stickers - shipping labels - tube data CHARTS • AND MANY OTHERS

SEE YOUR RAYTHEON DISTRIBUTOR ABOUT THEM TODAY!

Exactlonce in Eledrañics RAYTHEON MANUFAGTURHG GOMPANY Receiving Tube Division Newton, Mass., Chicago, ill. Atlanta, Ga., Los Angeles, Calif. radio and television receiving tuats o cathode rat rubeyj special purpose tuaes - suaminiature tubis MICROWAVE TUBES

ASTATIC IS FIRST IN PERFORMANCE FIRST IN CABINET STYLING

Booster Model BT-I

Note these Quality Features

1 Mallory Inductuner for continuous variable tuning.
2 High gain, very uniform on both high and low channels.
3 Simplified controls-single tuning knob with continuous tuning through both TV and FM bands.
4 Bard width adequate over entire range.
5 Low noise design and construction.
6 No shock hazard to user.
7 Offon switch for easily cutting in and out of circuit.
8 Selenium rectifier.
9 Single 6AK5 Tube.
10 Provide for either 72 ohm or 300 ohm impedance input and output.
11 Model BT-2 has handsome, dark brown plastic cabinet.
12 Model BT-1 has metal cabinet in rich mahogany woodgrain finish.
13 Large dial face is easy to see in tuning.
14 Model BT. 2 has recessed pilot light to show when booster is on.

- Yes, forget their low cost. and make your own comparison of these new Astatic Boosters with others at any price! You'll be amazed at the difference . . . the higher gain and greater reduction of interference and distortion ... provided by the Astatic BT-l and BT-2. Astatic engineering leadership has given these new units an unequaled ability to improve both TV and FM reception. But, the final proof is in your own results. Why not put them to the test and see why these new low-cost models are taking the field by storm?

The Technical Appliance Co., Sherburne, N. Y., manufacturer of TACO antennas expanded its manufacturing facilities to provide for 50% greater production and new and larger quarters for the engineering department.

Financial Reports

First 9 months	- 1950	1949
America	an Phenolic	orp.
Earmings	\$722,710	\$410,750
Sales	\$8,857,700	\$7,358,615
Belden	Manufacturing	Co.
Earnings	\$1,121,043	\$275,596
Sales	not given	not given

Earnings $\quad \$ 9,984,391 \quad \$ 7,330,652$

Sales $\quad \$ 170,597,077 \quad \$ 167,975,049$ Gabriel Co.
(Parent Company of Ward Products) Earnings $\quad \$ 611,513 \quad \$ 278,270$ Salcs not given not given General Bronze Corp.
(Parent company of Brach Mfg., Co.) Earnings $\quad \$ 1,083,822 \quad \$ 355,606$ Sales $\quad \$ 14,239,000 \quad \$ 7,800,33: 3$ Hytron Radio \& Electronics Corp.
Earnings $\quad \$ 2,514,374 \quad \$ 312,499$

Sales $\quad \$ 26,619,753 \quad \$ 9,498,804$
Earnings $\quad \$ 774,480 \quad \$ 34,486$ Sales not given not given

National Union Radio Corp.
Earnings $\$ 606,891 \quad \$ 75,309$ (loss)
Sales $\quad \$ 9,488,912 \quad \$ 5,653,082$ Sylvania Electric Products, Inc.
Earnings $\quad \$ 5,129,080 \quad \$ 1,911.597$
Sales $\quad \$ 105,778,320 \quad \$ 73,041,240$

Radio	Corporation of	America
Earnings	$\$ 33,384,637$	$\$ 14,095,186$
Sales	$\$ 395,741,391$	$\$ 275,673,666$

Dividends

Gabriel Co., parent company of Ward Products, voted a 10% stock dividend and a quarterly dividend of $15 f^{4}$ on common stock.
General Electric Co., announced a special dividend of $\$ 1$ per share payable Dec. 6.
Hytron Radio \& Electronics Corp., declared a special dividend of 10ϕ on common stock. The company also recalled all outstanding preferred stock for conversion to common shares.
Westinghouse Electric Corp., declared an extra dividend of 40 plus the regular $40{ }^{4}$ interim payment.

Business Briefs

RTMA officers, committees, and directors met in New York Nov. 14-16 to discuss major problems facing the industry. A public relations program on color, u.h.f. proceedings, a code of advertising ethics, military procurement, and the proposed excess profits tax were among the subjects considered.
. . Capehart-Farnsworth Corp., donated a complete television transmitter unit to Indiana Technical College of Fort Wayne, Ind.

Stromberg-Carlson has eliminated built-in antennas from current TV sets. . . Allen B. Du Mont Laboratories demonstrated its two-way, closed-circuit TV conference system by staging a dealer meeting covering an area from St. Louis to Boston.

Want To Double Your Pay?

How To Pass FCC … EXAMINATIONS

GE THIS AMAZIUG NEW BOOKLIT FREE

TELLS HOW -

WE GUARANTEE

TO TRAIN AND COACH YOU AT HOME IN SPARE TIME UNTIL YOU GET

YOUR FCC LICENSE

If you have had any practical experience-Amateur, Army, Navy, radio repair, or experimenting.

TELLS HOW -

Our Amazingly

Effective job-Finding Service Helps CIRE Students Get Better Jobs. Here are just a few recent examples of Job-Finding results:

Gets Five Job-Offers From Broadcast Stations
'Your 'Chief Engineer's Bulletin' is a grand way of obtaining employment for your graduates who have obtained their ist class license. Since my name has been on the list | have received calls or letters from five stations in the southern states, and am now employed as Transmitter Engineer at WMMT,
Elmer Powell, Box 274 , Sparta. Tenn.

Elmer Powe
I have obtained a position at Wright-Patterson Air Force Base, Dayton Ohio as Junior Electronic Equipment Repairman. The Employment Applica tion you prepored for me had a lot to do with me landing this desirable position

TELLS HOW - Employers make

 JOB OFFERS like These to Our Graduates Every Month!Telegram, August 9, 1950, from Chief Engineer, Broadeast Station, Pennsyl vania, "Have job opening for one transmifter operator to start immediately contact me at once.
Letter, August 12, 1950, from Dir. Radio Div. State Highway Patrol, "We hove two vacancies in our radio Communication division. Starting pay $\$ 200 ; \$ 250$ after six month's satisfactory service. Will you recommend graduates of your school?"
Letter, August 24, 1950, from radio-television sales and service company. Ohio, "We are in need of o good television man. The pay will be good, also good surroundings to work in. Please let us hear from you.
Telegram, Sept. 7. 1950, from Chief Engineer, Broadcast Station, Georgia, "Hove immediate opening first phone engineer. Prefer one with usable voice, experience not necessary. Prefer man from small town. Beginning pay $\$ 48$ for 48 hours.
These are just a few of the examples of job offers that come to our office periodically. Some licensed radiomen filled each of these jobs; it might have been you!

HERE'S PROOF FCC LICENSES ARE OFTEN SECURED IN A FEW HOURS OF STUDY WITH OUR COACHING AT HOME IN SPARE TIME:

```
Name and Address
2201/2 Wilshire St. Bakersfielt. Cal
Box 1016. Dania, Fla.
Francis X. Foerch.
38 Beucler PI., Bergenfield,N.,
317 North Roosevelt. Lebanon, III.
Albert Schoell,
```

License 2ud Phone

Ist Phone

Ist Phone.
Ist Phone... 28
2nd Phone 23
 is fastest, precision requirements the highest, costs the tightest-and day-after-day dependability an absolute must.

New 221K YTVM KII \$23.9; wired 549.95
In both the giant New York and New Jersey television plants of the Emerson Radio 8s Phonograph Corporation - at the many critical constant-duty testing positions along the production line-EICO instruments stand guard. For Emerson has found that for speed, accuracy and trustworthiness, at lowest cost, EICO instruments always deliver the fullest measure of value.
From coast to coast, in one leading TV factory after another, this is the experience-this is the proof of EICO superiority-that is repeated again and again. The top-flight TV set makers have discovered-and over 50,000 servicemen have learned-that for the industry's greatest instrument values, at the industry's lowest costs-it's EICO!

Be sure you look at the ElCO line before you buy any higher-priced equipment! Each EICO product is jam-packed with unbelievable value. YOU be the judge-compare EICO at your local jobber today-and SAVE! Write NOW for free newest Catalog C.

Hew 425K 5" Scoe kit $\$ 39.9$. Wired $\$ 69.95$

जाजत

ELECTRONIC INSTRUMENT CO. INC 276 NEWPORT STREET, BROOKLYN 12, NEW TORK

Mew 315K REUXE EIC. CEN Lll 5 5.95

IUBE TESTER KIT $\$ 29.95$ Wired \$14.95

360K SWEEP GEN. KIT $\$ 29.95$ Wired $\$ 19.95$

By HUGO GERNSBACK

TELEVISION in the home is only one of the many phases of a still new art. Commercial television is now in the ascendency, and no man can predict how far it will go.
Theater television is a term which has been misunderstood by many, even in the television industry. Television in the theater does not necessarily mean the showing in motion picture houses of newsworthy events such as baseball games, football matches, etc., as they take place.

There is, however, a very important TV phase, which, many year's ago the writer termed "tele-theater." In this purely commercial aspect of television the plays are not shown in the home, but only in the theater-to persons who paid their admission,
In the United States the legitimate theater is actually represented in only a few of our larger cities. E'ven in these the hit New York shows are not always to be found. This makes for a unique and deplorable situation with visitors to New York storming the hit shows only to be turned away because no seats are available, frequently not even at a cost of $\$ 50$ to $\$ 75$ for a pair of tickets to such hits as South Pacific, etc.

By means of television, however, it will soon be possible to bring to every city and town in the United States every top-flight drama and show. No one will dispute the fact that New York is the theater's recognized center. By means of television every possible live show will be televised throughout the country at an admission price within the reach of everyone.

With color television now assured within the next few years and by using projection television, it will be possible for an audience in Sioux Falls to witness a New York musical as if the viewers were in New York.

This idea is by no means new. When television was in its infancy, the writer covered this subject under the title of "The Tele-Theater" in the January-February, 1932, issue of Television News, of which the following is a condensation:
"The great inroads which the motion picture has made on the legitimate stage are becoming more serious right along and, if something is not done soon, we may have nothing but motion pictures left because, from year to year, it becomes more unprofitable for producers to put on legitimate performances. The reason for this is, of course, that it is impossible to give a "legitimate" performance for 504 -a price which could compete with the motionpicture houses. The prices for the drama in New York, for a good orchestra seat, are from $\$ 3.50 \mathrm{up}$, and for musical comedy shows from $\$ 6.60$ up.
"What, then, is the solution? I propose the following remedy, which I believe is sound, and I am certain that it will come about in the not too distant future. Television is the key to the situation.
"Recently, when the Sanabria giant television screen was about to be exhibited at the Broadway Theater in New York City, I was asked by the management to supply some new ideas to attract the public at large and secure favorable publicity for television.
"I suggested, at the time, that an attempt be made to connect the stage of another theater to the one at the Broadway Theater, and televise a distant performance on the Broadway screen. This suggestion was adopted, and the Broadway Theater, by means of a television transmitter, picked up the images of the actors on the stage of the Guild Theater, and showed this performance on the television screen of the Broadway Theater. This, then,
was the first time in history that two theaters were connected together by means of television. The results were quite satisfactory. What has been done on a small scale here, will be done on a tremendous scale in the very near future, by the instrumentality which I call the 'Teletheater'.
"Imagine a special building, erected in the City of New York, for the sole purpose of supplying the entire country with its daily theater program-not, mind you, motion pictures, which are a "canned" product,-but an actual theatrical performance.
"In order to do so, I visualize a building which will have a series of stages, grouped around a central shaft or pit. The idea behind the multiplicity of stages is that I propose to move the actors rather than move the scenery. At the present time it is necessary for the actors to go behind or before the curtain, when scenes are shifted. This is awkward and always takes up an amount of time for which the public in the future will not stand.
"In the central pit we have the stage director at the top of a skeleton steel structure with his assistant technical directors. Stage No. 1 is lit up and the orchestra located immediately beneath the director starts to play. Below the orchestra is a "battery" of television cameras. Microphones are located in wings in strategic positions. The television cameras are connected to a wire network radiating to all parts of the country, just as the wire network transmits radio broadcast programs to the different radio stations in the country now.
"In Boston, Chicago, Atlanta, San Francisco, and hundreds of other points, we will have local theaters where, for $50 c$, audiences can nightly see the latest Broadway production. Instead of only 1,500 or 1,600 people seeing the "Follies", 5 or 10 million people will view them nightly, for one week, or for as long as the local theater feels it commands an audience. Immediately the undertaking becomes tremendously lucrative, because millions now support a production; whereas before only hundreds did so, at prices which only the well to do could afford.
"In the tele-theater, we will, of course, have both sight and sound, and the audience will actually see and hear their favorite actors at the exact time when the production is being performed in New York. And it will even be possible to have the actors enjoy the applause, because microphones in the tele-theater can pick up the applause of the audiences and convey it back to New York. Thus the actors will have the satisfaction and incentive of the applause which is now missing-so much to their detriment -in motion pictures.
"Naturally, there will be a number of tele-theaters in the larger cities, all supplied by the great theaters in New York; so that, if you wish to go out in the evening, you need not see a musical show if you do not wish to do so. You may, instead, see a comedy or straight drama in another tele-theater in your own town, because New York City will telecast a multiplicity of productions the same evening.
"To satisfy remote points such as the West Coast, duplicate performances must be put on later in New York, on account of the time difference. Thus, for instance, a man in San Francisco will be seated at 8.30 o'clock (his time), which is 11.30 P.M. in New York, when the second performance for Western points starts."

None of this is more fantastic than television is itselfyou may be sure that it will all come about in the foreseeable future.

COLOR Telecision

By FRED SHUNAMAN

OF THE three main systems of color television that have been battling for FCC and public recognition, the tentatively approved CBS field-sequential system is most prominent today. The FCC has stated, however, that the door is not irrevocably closed against other systems, so interest remains strong in the runners-up. These are the line-sequential system of Color Television Incorporated (CTI) and the dot-sequential system developed by RCA. ${ }^{1}$

The pros and cons of these systems have been discussed with so much heat and so little moderation that the radioman is not quite sure of any one of their technical features. The publicat whom this barrage of facts and nearfacts has been directed-is hopelessly confused. The terms "compatible" and "incompatible" have been bandied about to such an extent that many laymen believe that it would be possible to get color pictures without modifying their present sets, if only a "compatible" system of transmission were used. At the other extreme is a sizeable number
who believe that present sets will become useless as soon as color television starts.
Let us review some of the technical facts to help clear up the nonsense. We have one system using relatively simple mechanical apparatus and two systems using more complex electronic equipment to produce roughly similar results. All three systems use standard black-and-white tubes with colored gelatine filters to insert the color into the images.

RCA has, it is true, demonstrated a single tube which produces the three colors with its own phosphors.? This promises a color system without filters and with only one instead of three kinescopes as used in the present RCA setup, but whether a three-color tube can be mass-produced economically enough to be used in home receivers remains to be seen, At least three types of three-color tubes (RCA, Geer, and Du Mont) have been patented; none have yet been proven to be (or not to be) practical.

Another abused catchword is "me-
chanical system." It is made even more puzzling when CBS spokesmen remark in passing that their system could also work with electronic color tubes. The fact is that the adaptability of any of the systems is a function of the speed of switching from one color to another. Equipment that can be used by the fastest-switching one can be used by the other two, but not vice versa! Colors are switched more than ten million times a second in the RCA system, 15,750 times in the CTI system, and only 144 times per second by the CBS method. Therefore either CBS or CTI could transmit and receive with equipment suitable for the RCA method. CBS could also use equipment of the type required by CTI's line sequences.

However, should CBS decide to rid itself of the stigma of a "mechanical system" and go electronic, it would have to accept some of the disadvantages as well as the advantages of the more complex systems. An excellent field-sequential system could be built up with three cameras and three kine-

SCANNING SYSTEM

COLOR PICTURE

Color Illustration I-The CBS field-sequential system uses six one-color fields to make up a complete color image.

SCANNING SYSTEM

COLOR PICTURE

Color Illustration II-The CTI line-sequential system combines all three primaries in each of its six fields.
scopes, but it would be much more costly than the color wheel. A fieldsequential system could undoubtedly use a three-color tube if such were available, but would be up against the same problems of color crawl, etc.,
as is the dot-sequential system, and similar complex and expensive methods would have to be used to solve them.

With the color-wheel system now used by CBS (Color Illustration I), receiving and transmitting equipment
differ little from that used for black-and-white. ${ }^{1,3}$ Color is supplied by transparent discs divided into red, blue, and green segments which rotate in front of camera and kinescope. The discs must be synchronized so that each segment

SCANNING SYSTEM

COLOR PICTURE

Color Illustration III-RCA's dot sequential system, with four fields per picture, has a complex interlace of dots.
is in position while the corresponding color field is transmitted. Thus, during a red field, a red filter ahead of the camera lens permits it to "see" only the red light from the scene, and the blue and green are not photographed. At the same instant, a red filter in front of the kinescope colors the partial image for the viewer. The same thing happens during the blue and green frames, and the eye receives the red, green, and blue primary images in such rapid succession that it sees a picture in full color.

Instead of black-and-white's two interlaced fields per frame, with 30 complete pictures per second, CBS pictures are composed of two interlaced color frames of three fields each. There
tial. Instead of transmitting a whole field or frame in one of the primary colors, the color is switched at the end of each line. Proponents of CTI's method claim that flicker is reduced enough by line switching to permit the system to be compatible. However, the 525 lines of the standard system introduce a problem. Since 525 is a multiple of 3 , the same line in each field would always be scanned in the same color. A system had to be designed to skip lines regularly, so that all parts of the picture would be scanned in three colors. By skipping, line 1 (for example) in the first field may be scanned in red, in the third field in green, and in the fifth field in blue. (Even-numbered lines would be scanned in the second,

Fig. 1-RCA dot-sequential transmitter, showing mixing of the high frequencies.
are 144 fields per second, with 24 complete pictures. It was necessary to cut the number of lines from the standard 525 to 405 to transmit the 144 fields within the regular 6 -me channel. This is the reason for Columbia's incompatibility.

Main advantages of the CBS system are its simplicity and low cost. Since the only modifications required are the above-mentioned changes in the scanning frequency and the addition of a color wheel, the CBS system requires no extensive or complex new equipment. Transmitters and receivers for color-or for color and black-and-white -can be constructed or modified at a fraction of the cost of adapting for either of the other systems.
The chief disadvantage of CBS color is its incompatibility. Because of the different line frequency, a standard receiver tuned to a CBS color broadcast will see nothing, either in black-andwhite or color. Another disadvantage is its lower definition, either in black-andwhite or color. Its 405 lines cannot reproduce fine detail as well as systems using standard 525 -line pictures. When used with a mechanical color wheel, picture size is limited to about 12 inches.

Other disadvantages are flicker and fringing. Its sponsors claim that the high field rate (144 per second) has fairly well eliminated flicker. Fringing -the breakup of color at the edges of rapidly moving objects-is still something of a problem.

The CTI system

The system demonstrated by CTI (Color Illustration II) is line sequen-

fourth, and sixth fields.)

CTI uses three lenses and three color filters ahead of its camera tube, so that three images, identical except for color, are formed on the mosaic. Instead of being speeded up as in the CBS system, the horizontal sweep is slowed down to one-third standard, so that a single sweep will give three lines, one in each primary color. Three cameras could of course be used. In that case a switching system would select lines successively from each of them.
The CTI receiver may consist of three kinescopes, each with a color filter and lens ahead of it. The lenses are so placed as to superimpose the three images on a screen, where they appear as a full-color picture. It may also be a single tube, with the three color rasters side by side on it, and the same optical mixing system.

CTI's great advantage is its compatibility. It uses the old 525 -line interlaced system. The disadvantages are complexity (as compared to CBS) and another peculiar to a line-sequential system. This is line ficker or line crawl, in which the lines seem to be crawling up or down the picture. It can be avoided to some extent by the complex color interlace in which six fields are required for a single color picture. The number of complete pictures is thereby decreased to ten per second, which seems slow. Sponsors of the system say that the line-by-line color switch prevents this from producing objectionable flicker.

RCA dot-sequential color

Probably more has been said about the RCA (Color Illustration III) dot-
sequential system than both others combined. It is the most complex, the hardest to understand, and offers the greatest possibilities for future development of any of the three systems. Instead of breaking the color up into its primaries by fields and lines, the RCA system breaks each line up into dots of primary color. Each color is scanned or "sampled" +3.6 million times per second, and a stream of colored dots appear on the viewing screen. These combine to form a color picture much as do the dots of a color plate used in printing books or magazines. The dots of color printing do not fill the whole area, however, whereas those of RCA color television overlap about 50%. The small size and rapid succession of dots reduces problems of flicker and fringing to where they can be ignored.

Four fields are required for a picture. Two are the standard line interlace; the other two trace over the same lines, but the color dots are displaced so that a dot in field 3 is halfway between two dots of field 1 and one in field 4 halfway between those of field 2 . This, plus the 50% overlap, insures that all parts of the scene are scanned in all three colors. There are 15 pictures a second, since the standard 60 -field system is used.

RCA's great advantage is compatibility, but it has another-that of greater definition than its rivals. The high frequencies from each of its three color cameras are mixed together, and the low frequencies are sent through the color sampler which transmits the signals to produce color in the received picture. Fig. 1 shows how this is done. Mixing the highs causes the fine detail of a scene to be reproduced in each of the colors, no matter what its original color. Therefore large bodies (which are reproduced by the low-frequency signals) are transmitted in color, while points, edges, and outlines are actually in black and white.

Strange as it sounds, this actually works. If, for example, two adjacent sides of a building appear in deep green, and the fine corner line that separates them appears as black or white (depending on whether it is in sun or shadow) the eye is satisfied. Indeed, there is reason to believe that the eye does not perceive color in fine detail, and the mixed-highs principle may produce pictures closely resembling what the eye sees in nature.

Disadvantages of the RCA system are the complexity and cost of the equipment and its operation. Colors are switched more than 10 million times a second, instead of 144 times as in the CBS system or the 15,750 times of the CTI system. The difficulty of keeping the apparatus in perfect adjustment is enormously increased. Color drift was one of the early problems of this system, and produced some interesting (but to the engineers hair-raising) effects. Thus bananas on a plate might apparently age, turning from yellow to brown as they were being carried to or from the center of the picture.
(Contimued on page 32)

Simple changes in the sweep circuits often suffice to convert to CBS color, Circuits for converting popular makes of receivers are described in this article.

WHILE the industry makes up its mind whether to go along on color TV as authorized by the FCC, you can still enjoy the CBS broadcasts on your own receiver by making simple changes in the sweep circuits.

Don't misunderstand me ... you can get an enjoyable picture for your own use, but it may be unwise to offer to convert a customer's set on a commercial basis. To get a picture of exactly the same brightness, size and with the same scanning linearity as the original 525 -line picture is an engineering feat of the first order, and may call for replacing important parts in many receivers.
A 7 -inch electrostatically deflected set will be easiest to convert. Larger sets with r.f. power supplies are often simple to handle. TV receivers with flyback high-voltage systems will cail for complex circuit switching. For a commercially acceptable job, it would probably be necessary to replace the flyback transiormer and yoke in many of these.

The frequencies of the deflection oscillators in present black-and-white (monochrome) TV transmissions are 60 cycles per second for vertical and 15,750 cycles for horizontal sweep frequencies. For the CBS field-sequential color TV broadcasts these oscillator frequencies must be changed to 144 cycles for vertical deflection and 29,160 cycles for the horizontal line generator.

The hold control resistance must be adjusted to a smaller value in the multivibrator or blocking oscillator used to generate the sweep frequencies. The ratio of change will be the reciprocal of that between the monochrome and color sweep frequencies. For verti-

Fig. 1-Converted 7 -inch sweep circuit.
cal this will amount to a value of $1 / \sim .4$ of the total frequency-determining resistance of the sweep oscillator in the

The color wheel in position in front of the video screen. The wheel may be any place between viewer and receiver, but should be near the receiver for best results.

By IJORMAN L. CHALFIN

black-and-white receiver. For horizontal the new value for color will be $1 / 1.851$ times the black-and-white value. With these fractions you will be able to determine the values for any receiver different from those in the circuits illustrated.

In most of the circuits there is a
limiting resistance connected between the frequency-determining grid of the sweep oscillator and the hold control. This commection is broken and a switch inserted. In some of the very eally receivers there is only a hold control and in some cases no change is necessary other than the proper adjustment

Fig. 2-How the changeover switch was installed on the Teletone TV 149 chassis.
of the hold control. Whether new resistors are switched into the circuit or an adjustment is made directly, the higher sweep frequency usually comes from the oscillator at a lower amplitude than

$51,52,53,54=4$ POT SW ON COMMON SHAFT IN COLOR POSTIION
Fig. 3-'The sweep circuits of a Motorola VT 71 adapted for color reception.
the original black-and-white sweep frequency. This will result in a smaller image and will require adjustment of the size control each time a change is made from monochrome to color reception, or back again. This problem is overcome by switching separately adjustable size controls (see Fig. 11) at the same time as the hold control values are switched. In some cases it may be advisable also to arrange to switch in separate linearity adjustment controls if they are present in the receiver.

Reference to the several circuits that accompany this article will clearly show the methods that have been developed hy the author for making the color images broadcast by CBS visible in
vert SWEEPI2SN7-GT

Fig. 4-The Hallicrafters T54 sweeps with alterations for receiving color.
black and white on an existing receiver. These, in effect, are circuits the manufacturers would have had to include in sets to meet the bracket standards originally proposed by the FCC last fall.

Several circuits similar

A general similarity in the circuits of the 7 -inch TV sets simplifies adaptation for color. Fig. 1 shows the Teletone TV 149 deflection circuit in which the horizontal and vertical oscillator circuits are identical with only the values of some components changed to establish the vertical or horizontal oscillator frequency. For this reason only one of the circuits is shown with the switching data that is required.

The photograph (Fig. 2) shows the placement of the switch on the chassis of the TV 149. It is a four-pole, doublethrow unit which in one position retains the original circuit components and in the second position gives the color values their place in the circuits.

Fig. 3 shows the wiring arrangement for adapting the Motorola VT 717 -inch TV sets so that they can receive the CBS color transmissions in black and white. Note, here, that there is no deflection amplifier in the horizontal sweep circuit. The horizontal blocking oscillator is very cleverly arranged to

Fig. 5-A converted blocking oscillator of the type used in 630 chassis.
deliver push-pull deflection voltages directly to the cathode-ray tube plates. The vertical system resembles the Teletone previously described. The hold control is in the grid as in the Teletone circuit. The size control is in the plate load circuit. A four-pole, double-throw switch will cover this adaptation as for the Teletone.
In case insufficient horizontal voltage is supplied, however, it may be neces-
sary also to switch the output transformer (Motorola No. T-6) with one that will tend to resonate with the two $900-\mu \mu \mathrm{f}$ capacitors at the new frequency. The daring experimenter might even consider switching another pair of coils in parallel with the present ones to cut down the inductance.

The Hallicrafters T54 deflection oscillator circuits as shown in Fig. 4, are basically identical with the Teletone. There is a slight variation from the Teletone in size control placement. Horizontal size control in the T54 is connected in potentiometer fashion instead of as a rheostat. It is part of a B-supply bleeder system. The vertical size control is in the grid of the vertical deflection amplifier. The latter connection necessitates an extra switch position, as can be seen in the circuit diagram (Fig. 4) thus requiring a 5 -pole, double-throw switch. The horizontal color size control is connected in parallel across the original control and is equal in resistance to it. No serious change in operation takes place as a result of halving the total resistance value. For those who prefer to retain the original operation, a sixth position can be added to the switch. With it, the connections for switching of the horizontal size controls can be made in similar manner to the vertical, by hreaking two of the connections to the controls.
The circuit shown in Fig. 5 is the type of blocking oscillator used in the vertical deflection system of many receivers. The commercial variations of the RCA 630 TS use this circuit. RCA's own 630 uses a 6J5, and the discharge action is accomplished in the cathode circuit instead of a second triode, as shown. The 9T246, a similar arrangement, is seen in Fig. 6.

Other receivers

As previously indicated, the 7 -inch sets and those with r.f. power supplies are easily adapted to meet the requirements of receiving the CBS color programs in black and white. Sets that have the flyback type of high voltage supply working from the horizontal deflection system will require more complex switching arrangements. Particularly, sets with horizontal a.f.c. systems fall into the more-difficult-toconvert category.

There is shown in Fig. 7 the switch-

Fig. 6-Vertical deflection circuit of the KCA 9T246. To receive color, the vertical sweep frequency must be 144 cycles and the horizontal 29,160 cycles.
ing of components of the horizontal a.f.c. system employed in the 630 TS type of set. For this alone, three switch points are required: discriminator frequency adjusting capacitance is changed, horizontal oscillator reactancetube frequency adjusting capacitance is changed, and the values of horizontal drive R-C network are changed. The right side of Fig. 8 shows the rest of the horizontal system changes that will be required for the 6BG6-G and flybackoutput transformer system. Fig. 8 shows a typical Synchroguide system as adapted to the 29,160 -cycle sweep frequency switching for color from the black-and-white 15,750-cycle sweep. Fig. 9 is a new horizontal output transformer with separate taps for the monochrome and color horizontal output connections to the deflection coils. The changes are necessary because, when the original system is used, there is a deterioration in horizontal output linearity and sweep amplitude in the color position. The new transformer has more turns for the color secondary connection to the horizontal deflection yoke than for the monochrome connection.

The transformer is wound on a square ferrite horizontal output transformer core, with a gap of .015 inch in each leg. The primary (1-2) is wound with 800 turns of No. 28 single-silk enamel insulated wire. The high-voltage winding in series with it consists of another 800 turns of 10-44 litz or No. 36 single-silk or single nylon enamel wire. The secondary is also wound with this wire. Position of the windings is the same as on the transformer it replaces, as is the method of winding. It will be practically impossible to wind such a transformer by hand, but they may become available commercially in the near future.

The modifications indicated in Figs. 6, 7, 8 and 9 were worked out by CBS engineers, to whom thanks are due for supplying the information.

The color converter

If the above changes are made, you will be able to receive color broadcasts in black and white. To see them in color you will need a rotating disc. The most effective disc diameter should be a little more than double the width of the picture to be received. Six sectors are arranged on the disc with the three colors in this order: Red, Blue, Green, Red, Blue, Green. This is shown in Fig. 10. This disc must rotate at a speed of 1,440 r.p.m. before the screen of your set. For three segments (120° each) motor speed would be $2,880 \mathrm{r} . \mathrm{p} . \mathrm{m}$. A standard 1,800r.p.m. phonograph motor would have to be geared or friction-driven to lower the speed. Several methods of synchronization are possible. One of these would be to drive the motor with a 48-cycle oscillator synchronized by some fre-quency-dividing circuit deriving its sync pulses from the 144 -cycle vertical sweep system of the receiver when set for color TV.

When observing the test pattern transmitted by CBS in New York, you

Fig. 7-Circuit showing how the components are switched for color reception in the 630 type receiver. This is the horizonial a.f.c. section of the set.

Fig. 8-The horizontal deflection and high-voltage circuit of the RCA 9T-246 type receiver showing the modifications that are made to receive color.
will find it moving in a circular path at a rate of about one revolution in 20 seconds. This was done to prevent the test pattern from burning into the image orthicon on the color camera.

Several plastics suppliers make available colored sheet plastic suitable for color dises. Eastman Kodak is expected to put out a set of color television filters in the near future.

Good results can be obtained with Wratten No. 26 for the red; No. 47 for the blue, and No. 58 for the green. Approximately equivalent Plexiglas numbers are: No. 159 or 160, red; 263, blue; and 260 or 2004 , green; and Lucite: No. 10539, red; No. 7456, blue; and No. 3526 , green.

A commercial dise is on the market at a cost under $\$ 20$. This is the Celomat unit and has a manual speed adjustment. It will hold synchronization for reasonable periods but does require frequent re-adjustment. It is intended that you look at the screen of your adapted TV set through this device where it is nearer to you than to the set. The larger the screen, the further away you will be. Used in this way the color disc has a particularly humorous deficiency. After getting the Celomat device into synchronization, so that flesh tones are of the proper hue, if you move to the left or right of the viewing position in which you first adjusted synchronism these tones turn to a predominantly blue or green tint. Possibly this effect can be used to add proper eeriness to mystery shows.

Fig. 9-Horizontal output transformer tapped for hlack-and-white and color.

Fig. 10-The color wheel layout. It must rotate at a speed of 1,440 r.p.m.

Fig. 11-The adjustable size controls.

Linearizing Circuits for Video Deflection

By SEYMOUR D. USLAN*

2-b. Note that the repetitious charging point does not start at the very bottom.

The capacitor charge curve is most nearly linear at the bottom rising portion. If the point of discharge occurs at a low voltage compared to the available charging voltage, then the linearity of the sawtooth waveform is improved. However, the charge and discharge conditions within the receiver are such that a certain degree of nonlinearity always exists-enough to cause distortion in the reproduced picture.

Certain other circuit operations, besides that of the sawtooth-producing circuit, may cause a linear curve to become appreciably nonlinear.

Fig. 1-a, left-Poor vertical linearity causes compression at top of picture. Fig. 1-b, right-Poor horizontal linearity causes compression at the side.
linear, that is, if the rising part of the sawtooth is curved, the reproduced picture is distorted. This distortion is illustrated by the test patterns of Fig. 1. Pattern 1-a shows nonlinear vertical deflection and 1-b shows nonlinear horizontal deflection. The defective scanning causes cramping and flattening at the picture top or side.

Capacitor charge

In practically all cases, a charging capacitor in the deflection circuit (usually of the blocking oscillator or multivibrator type), produces the sawtooth waveform. The charging-voltage-versus-time characteristic of a capacitor appears in Fig. 2-a. This curve is nonlinear. To produce a deffection waveform, the capacitor must be repeatedly charged and discharged at the same point in each case. The point of discharge usually occurs somewhere along the curve, as indicated in Fig. *Managing Editor, John F. Rider Publisher, Inc., New York. Co-author: Encyclopedia on CathodeRew Oscilloscopes and Their Usea; FM Transmission and Reception; and other electronic texts.

To correct these defects, special circuits are used to "linearize" the deflection signals before they are applied to the picture tube. The circuits provide correction by presenting some frequency discrimination to the nonlinear waveform or by causing the waveform to be subject to the characteristics of some deflection amplifier.

Three important types of correction circuits used in television receivers are: nonlinear amplifiers, damper tube circuits, and auxiliary time-constant circuits.

Nonlinear amplifier

If the defective sawtooth wave can be fed through an amplifier that has a nonlinear characteristic just the opposite to that of the wave itself, we can straighten out the wave. Wave A of Fig. 3 is the input nonlinear sawtooth fed to the amplifier and B the output sawtooth signal. By operating the tube over the correct part of its transfer characteristic, the output sawtooth can be made very nearly linear.

The nonlinear amplifier is usually of the remote-cutoff or variable-mu type. The bias on the tube must be correctly adjusted for the input sawtooth to operate over the proper part of the transfer characteristic. In most television receivers using this method of linearization, the bias on the tube is made variable for adjusting linearity. A typical circuit appears in Fig. 4. R1 and R2 are the cathode bias resistors and C 1 is the cathode bypass capacitor. By making resistor R 2 variable, the bias on the tube can be changed and the correct operating point selected.

Such types of linearizing circuits are found most often in the vertical deflection circuit of television receivers where the tube usually is the vertical output amplifier. Adjustment of the linearity control in this circuit also affects the vertical size of the picture because a change in bias also changes the amplification of the tube.

Damping tube circuits

In kickback horizontal output systems a ringing or oscillation is produced during the retrace period of the electron beam. This is caused by the horizontal output transformer, deflection coils, and associated circuit capacitances breaking into oscillation. Oscillation may continue long enough to affect the linear rise time of the deflection waveform. To reduce this effect, a damper tube is used as shown in Fig. 5.

Immediately after the retrace period of the deflection waveform, a high positive pulse is applied to the plate of the damper tube and causes it to con-

Fig. 2-Charging curves of a capacitor.
duct heavily. This strong conduction loads the oscillatory system, and damps the undesired oscillations. Besides loading the oscillatory circuit, the damper supplies additional voltage to the plate of the horizontal output ampli-
fier as it rectifies the positive pulse.
Although the damper tube prevents continued oscillations, enough energy is stored in the magnetic field of the

Fig. 3-Transfer characteristic of tube compensates for the nonlinear sawtooth.
oscillatory circuit to keep the tube conducting until this energy is dissipated. This energy dissipation makes the resultant current flow through the deflection coils linear, as indicated from points A to B in Fig. 6. After point B the current is no longer linear, but tapers off rapidly from points B to C.
Now the horizontal output amplifier takes over. The amplifier does not conduct during the retrace period of the beam and remains at cutoff during most of the time the damper tube is conducting because a negative pulse from the sweep oscillator is applied to its grid.
The amplifier starts to conduct when the deflection current, due to damper conduction, starts to become nonlinear. Current in the amplifier causes a continuation of current flow in the deflection coils. This initial current flow is nonlinear as from D to E in Fig. 6, and somewhat opposite in shape to that from points B to C of the same figure. After point \mathbf{E}, the deflection current flow is linear. At point F, the retrace begins and the action starts again.
The circuit of Fig. 5 is so arranged that the nonlinear deflection current of the damper tube and of the amplifier (currents B to C and D to E in Fig. 6)

Fig. 4-Linearizing circuit that works on the tube's transfer characteristic.
are opposite in shape and produce a resultant current that is linear. The total trace from A to F is then linear. As an additional function, the damper tube together with the amplifier produces a linear trace and is a method of linearizing the deflection waveform.

We mentioned that the supply voltage on the amplifier plate is increased due to the kickback of the oscillator system. This increased voltage is ap-
plied to the plate of the amplifier by C1 and C2 because these capacitors become charged by the kickback voltage. This kickback voltage is pulsating and, although C1, C2, and L1 smooth out these pulsations, a certain amount of ripple voltage still exists. This ripple voltage is used to control the linearity of the resultant current.

By making L1 of Fig. 5 variable, the phase of the ripple voltage on the plate of the amplifier can be varied with respect to its grid signal. This means that the initial flow of amplifier plate current can be changed. Varying this inductance helps the nonlinear current (D to E in Fig. 6) produced by the amplifier to be exactly opposite to the nonlinear current (B to C) pro-

Fig. 5-A damper tube in the horizontal output helps to linearize the sawtooth.
duced by the damper tube. In this way any nonlinearity in the dashed part of the trace is kept to a minimum.

Time-constant circuit

Another way to correct linearity is to use an extra time-constant circuit to offset the one in the circuit producing the sawtooth waveform.

The additional time constant introduces a frequency discrimination to the nonlinear sawtooth waveform to straighten it out. The graph of Fig. 7 shows what is theoretically wanted. Curve A in part " a " of this drawing is the nonlinear trace of the sawtooth waveform. Curve B is the shape of the curve introduced by the time constant. Its shape and location on the graph must be such that when combined with the nonlinear sawtooth, the result is a straight line, as indicated in Fig. 7-b.

The complete circuit appears in Fig. 8. V1 is the discharge tube of the deflection circuit, and V2 is an amplifier to which the corrected waveform is fed for amplification. Components R1 and C1 are the grid resistor and coupling capacitor of tube V2. The sawtooth producing capacitors are C2 and C3 and the resistor through which they charge is R2. Components R3 and C4 are the additional time-constant circuit that corrects the linearity of the sawtooth waveform. Capacitors C2 ard C4 are usually equal and C3 is approximately one-half their value. The corrected sawtooth deflection signal is taken across capacitors C3 and C4.
To understand how correction occurs, we will assume capacitnrs C2, C3, and C4 are being charged from B-plus. Capacitors C2 and C3 charge through R2 alone, but C4 charges through R2
and R3. When the discharge tube starts conducting, all the capacitors begin to discharge. Since C2 and C3 are directly across V1, they discharge very rapidly. However, C4 discharges slowly because the discharge current also flows through $R 3$ which has a high value

Fig. 6-Damper tube current and amplifier current produce the resultant sawtooth current in the circuit of Fig. 5. compared to the resistance of the discharge tube.
By the time V1 stops conducting, C2 and C3 are practically all discharged, but C4 has only given up a small part of its charge. C2 and C3 begin to charge again, but C4 continues to discharge because its previous charge is high compared to the voltage across C 2 . The discharge of C 4 causes an additional charge on C2. In other words, the

Fig. 7-Curves A and B add together to produce the linear voltage at right. charge on C 2 from the B-supply is an increasing voltage but the charge duc to C4 is decreasing. When the total charging voltage on C2 equals that on C4, the latter stops discharging and starts charging through R2 and R3.
Across C3 we have the nonlinear deflection voltage represented by curve A in Fig. 7-a. Across C4, however, is a voltage which includes the action of C2 charging from two sources, plus the later charging action of C4. The result is a curve shaped similarly to that shown in Fig. 7-b.
So that R3 and C4 present the correct time constant to linearize the waveform. R3 is variable.

Fig. 8-A circuit for linearizing the sweep wave with an $R-C$ time constant.

NewTrends in Te, rictatacting a.g.c., and By WALTER H. BUCHSBAUM*

TODAY'S television receivers have come a long way since the 441 -line, 5 -inch sets to be found in some 5,000 homes in 1940. Their quantity and quality has advanced with seven-league boots. Present 525 -line standards and greatly improved techniques combine to give the American people entertainment of a quality and at a price that everyone can afford and enjoy.

Since 1946 , when television receiver production first started on a large scale, each year has brought improvements in design and price reduction, both important for mass acceptance of television.

The outstanding aim of the television industry during the past months has been to hring television to the lowincome groups. Most of the new designs: stress low cost without sacrifice of quality and the most pronounced improvement in this respect is the use of large-screen, wide-angle picture tubes. Five years ago the largest directview picture tube was a 20 -inch, allglass monster which required a tremendous cabinet and cost several hundred dollars. Today's 19AP4 (Fig. 1)

* Author: Television Servicing.

Fig. 1—The 19AP4, a large-screen picture tube used in many 1951 receivers.
fits into most cabinets and costs less than $\$ 50$ at the manufacturer's level. Its shorter length is due to a wider deflection angle which in turn requires more deflection power. To get sufficient brilliance on such a large screen the second anode voltage ranges from 12 to 15 kilovolts.

A real cost reduction is possible with the new rectangular picture tubes. Fig. 2 shows a Hytron 16RP4, and Fig.

Fig. 2-Rectangular tubes such as this 16R1'4 are popular in the new receivers.
3 gives an idea of the dimensions of such a tube compared with a 16 -inch round picture tube. While the price of the rectangular tube is not substantially below that of the round type, the manufacturer can use a smaller cabinet, save on shipping and storage space, and use a less expensive mounting harness. The actual difference in cabinet prices at wholesale level ranges from $\$ 5$ to \$8, a considerable saving for the manufacturer.
Other new picture tubes are the 14 inch rectangular, giving a 12 -inch picture, and the new 17 -inch metal-envelope rectangular tube. Reduced weight and prices are the advantages expected from the metal 17 -inch, which goes into mass production this month. Rectangular 20-, 21-, and 24 -inch tubes are also scheduled for 1951, but so far only the 20 -inch is being delivered. Du Mont has announced a 30 -inch tube having a deflection angle of 90 degrees.

Most of the new picture tubes have either a "black face" or etched screen which reduces glare but also requires
more brightness. This increased brightness is obtained by using a higher anode voltage, usually from 12 to 13 kilovolts. A higher anode voltage again increases the deflecting power needed to cover the screen. Last year several manufacturers solved the problem of higher voltage and more sweep by using powdered-iron flyback transformers with a voltage doubler in the highvoltage section and two horizontal output tubes in parallel. Aside from being expensive, this system uses more B-plus and filament power, requires more chassis space, and dissipates more heat.

Deflection circuits

New, high-efficiency flyback systems were developed during the past year which furnish the required deflection as well as the higher anode voltage without using more power or using more tubes than the original flyback for the 10 - and 12 -inch tubes. As a matter of fact, most of the newly developed horizontal output tubes operate with less B-plus power than the old 6BG6-G. Such new tube types are the 6AV5-GT, 6AU5-GT, 6BD5-GT, 6BQ6GT, and 6CD6-G, the first three of which use no top cap for the plate connection and are of the same physical size as the 6SN7-GT or 6K6-GT.

These high-efficiency flyback circuits depend on a special transformer which has high permeability and a high-Q core made of a ceramic material called Ferrite. The windings and the core material of these transformers keep dissipation losses at the horizontal sweep frequency very low. Several manufacturers are now using these transformers together with wide-angle deflection yokes. A circuit using this high-efficiency flyback system is shown in this issue in the article by Matthew Mandl.

To economize on the vertical deflection system, three new tubes were developed and are used in most 1951 receivers. The 6 S 4 is a miniature triode used as a vertical output tube. The 12 BH 7 and the 6BL7 are both double triodes, the former using a nine-pin miniature base and having a tapped filament for either 6.3 - or 12 -volt operation. The 6BL7 looks like a 6SN7-GT
but is a more rugged version, capable of dissipating more plate power. Several manufacturers use a simple autotransformer with these new tubes to couple the vertical output tube to the deflection yoke.
The deflection yoke used with the new wide-angle picture tubes is different in two respects. First its physical length is reduced to avoid neck shadow (see "Television Service Clinic," RadioElectron_cs, December, 1950). Second, its Q must be high or it will ruin the high Q of the ceramic-core flyback. Most yokes use a Ferrite or similar material ring instead of the powdered iron or iron wire of older type deflection yokes.
Some of the 1951 receivers use no flyback transformer at all. Highimpedance deflection yokes and special air-core autotransformers for highvoltage stepup are used in a few models, while some use paralleled output tubes in circuits familiar from 1949 and 1950. The deflection yoke inductance (horizontal coils only) is 8.3 mh for 10 - and 12 -inch tubes. The new, highefficiency circuits use either a $10-, 12$-, or $18-\mathrm{mh}$ winding, while the so-called high-impedance yokes have about $30-\mathrm{mh}$ windings.

Fast-acting a.g.c.

Among the more important advances in TV designs is the perfection of a better fast-acting automatic gain control (a.g.c.) system which can compensate for airplane flutter and is almost immune to noise. Referred to as "gated" or "keyed" a.g.c., this system has been described before in RadioElectronics, but now it is being used in so many 1951 television sets that it deserves another brief description.

The circuit shown in Fig. 4 is typical of most of the fast-acting a.g.c. circuits now in use. In this particular circuit a special winding in the width-control coil supplies the keying pulse.

Fig. 3-While picture size is about the same, the rectangular tube has smaller overall dimensions than the round tube.

Keyed a.g.c. operates only on the amplitude of the horizontal synchronizing pulse and is in operation only while that pulse appears on the a.g.c. tube grid. The a.g.c. filter, therefore, need filter out only about 15 ke and can have a much faster charging and discharging rate than in an ordinary a.g.c. system. The rapid changes in signal strength due to airplane flutter are fully compensated as rapidly as they occur.

Noise riding in with the picture signal can hardly affect the a.g.c. bias.

Only those noise elements riding in with the synchronizing pulses can have any effect on the bias. Since the synchronizing pulses occupy only 5% of the total signal, only 5% of the total noise can get through. If the top of the synchronizing pulse is clipped at the first video amplifier, the system will be almost entirely independent of noise.

The 6AU6 a.g.c. tube in Fig. 4 has a constant bias of about 5 volts due to the voltage drop across R1, one of the plate resistors of the first video amplifier. This bias cuts the tube off completely unless a strong positive signal appears on the grid. The plate of the tube is at ground potential, while the cathode is 150 volts positive. No current flows in this condition; but when a 300 -volt flyback pulse from the width coil winding appears on the plate, it

Fig. 4-A simple keyed a.g.c. circuit.
becomes positive and current could flow through the tube. But the bias cuts the tube off unless, at the same instant, a positive synchronizing pulse appears on its grid. Depending on the amplitude of that synchronizing pulse, more or less current flows through the a.g.c. tube.

If a strong station is received, the synchronizing pulse on the grid drives it more positive, permitting more current to flow. This plate current through the a.g.c. tube goes to ground through R2 and R3, setting up a voltage negative with respect to ground. If more current flows, a large negative bias is developed which reduces the gain of the r.f. and i.f. amplifiers and therefore the amplitude of the synchronizing pulse at the video amplifier. A balance is reached almost instantly, giving a constant and steady picture over a wide range of weak and strong signals. C1 and R3 form the a.g.c. filter, and the relation of R2 and R3 determines how much of the total bias is being applied to control the r.f. and i.f. stages,

Keyed a.g.c. is used in Admiral, Andrea, Westinghouse, Air King, StewartWarner, Silvertone, Teletone, Strom-berg-Carlson, and other well-known receivers. When properly adjusted, this circuit is not only trouble-free but relieves the set owner of having to adjust contrast and brightness for different stations.

Gated beam discriminator

Used in one or two 1950 models, the gated beam discriminator is becoming rapidly the most popular FM detector for low- and medium-priced TV receivers. The two main advantages of this circuit are its economy and its excellent performance in AM rejection and limiting.
The operation of this circuit (Fig. 5)
is based on the internal structure of the tube. Only a narrow beam of electrons travels from cathode to plate. The electron beam is formed by the accelerating grid Ga which is at a constant

Fig. 5-Gated beam FM detector circuit.
d.c. potential. The FM signal is injected at the usual grid Gs and R1 establishes a self-bias in the cathode circuit. The key element is the tuned circuit L1-C1 which forms the return path of the fourth tube element, the gating or quadrature grid Gg . This tuned circuit resonates at the center frequency and must have a very high Q, at least 150 , at that frequency. At resonance, maximum voltage is developed across a parallel tuned circuit, or maximum signal is absorbed by it, so that practically no electrons reach the plate at the resonant frequency. This is especially true in the case of the 6BN6 tube used here, where the internal structure is different from ordinary pentodes.

As the input frequency deviates from the resonant frequency of the gating grid circuit, more electrons reach the plate. In other words, the plate current varies as the input frequency varies, and an audio signal is developed across the $220,000-\mathrm{ohm}$ plate load resistor, depending only on the frequency change of the FM signal.

Especially useful in intercarrier systems, the gated beam FM detector eliminates the need for a 6AU6 i.f. amplifier and limiter, the usual ratio detector transformer, and a double diode with a triode audio driver tube. When properly designed, the output of the 6BN6 circuit shown in Fig. 5 is sufficient to drive any standard audio output amplifier such as the $6 \mathrm{~V} 6,25 \mathrm{~L} 6$, or 6K6-GT.

The cathode bias potentiometer R1 is adjusted for maximum AM rejection; in other words, for minimum buzz. L1 is tuned to the center frequency (4.5 mc in intercarrier sets) just like T1. While T1 is tuned for maximum audio output, L1 is adjusted to give minimum output voltage when a $4.5-\mathrm{mc}$ unmodulated signal is fed in through T1. This adjustment is as critical and touchy as the ratio detector adjustment in earlier circuits. Once adjusted, the gated beam detector stays aligned and operates properly for a long time.

During the past year only very few large manufacturers have used the gated beam FM detector circuit, but as more 6BN6 tubes become available and as component suppliers tool up for the gating coil, more sets will use this system in 1951. Zenith, Teletone, and many others include the gated beam detector circuit in their intercarrier receivers.

bers is important. The equipment shown on the cover was part of an installation by Du Mont at St. Clare's Hospital, New York City, where it was used during a large meeting of doctors and surgeons, who viewed a number of important operations which otherwise could have been seen by only a few

Certain tests on machines, such as high speed motors (and now, jet units) used to be made in concrete pits, with engineers watching over a wall. In case of an explosion or a motor flying apart, the engineer's ducking speed was more important than his technical knowledge. Now these tests can be made with a camera focused right on the most important feature of the test; either on the meters as in Image 1 or on some critical part of the equipment itself.
Large department stores have already found use for television in making their displays visible to a larger number of people as well as to bring colorful displays to the attention of customers in other parts of the store or to windowshoppers, as indicated in Image 2. Gimbel's of Philadelphia and Gertz' of Jamaica, New York, have done considerable experimental work with store televisers. The scene on our cover also shows how closed-circuit industrial-type television could be used by a model to demonstrate clothes or to advertise other items.
Time is occasionally lost in a bank while a signature is heing identified, and under some circumstances good will and a valuable account is lost as well. Image 3 shows how this can be prevented. The clerk can call for a copy of any signature, which can be flashed to him in a matter of seconds. The same equipment can also be used to make records available for inspection at a number of points. The records can then be kept in a central depository.
Some types of inspection, while not perilous in the sense of Image 1, bring hazards of fumes, heat, gases or splash-
ing melted metal which make the inspector's work difficult and unpleasant, if not immediately dangerous. Image 4 shows how the pouring of metal in a mold can be viewed from much closer range than was possible under the old system of stationing a man 50 feet from the operation. Working in comfort at closer effective range, the operators can do a much better job of controlling the work.
Where material is borne along a chute there is always the danger of clogging or piling up. In the case shown in Image 5 , coal is moved with the help of water. One person viewing the operation on a television screen and increasing or reducing the flow of water can replace two or more men, who would otherwise be placed at various points along the chute to watch for pile-up.
The television camera can be a more efficient watchman than any human, for it can be made to operate with infra-red light. Thus it may maintain a perfect watch in a "dark" area, throwing a bright and detailed image on the screen. Image 6 is a burglary that didn't quite come off as planned.

Another type of property protection in which television can be particularly useful is that of watching objects in a museum or art gallery as in Image 7. It has a double advantage over direct supervision. The would-be thief cannot see the guard and cannot tell when he is not under direct supervision. Neither can the thieves create a diversion to draw the guard away from a given spot.

Image 8 is another instance of television used for meter reading. In certain cases direct viewing of a number of meters is more advantageous than a telemetering system, and in others optical viewing is required by law, as in the case of water-gauges on steam boilers. Industrial television equipment is the answer
The portability of the camera is a
factor in its versatility. It can be used for a short-time job with little expense, as in the meter-viewing project, where setting up a telemetering system would be practical only in a permanent installation. In many cases of disaster, a
tant phenomenon to be observed.
The closed-circuit feature of industrial television has one great advantage. Since there is no broadcasting through space, there is no need of regulating bandwidth. So the industrial color tele-

Closeup of the RCA Vidicon, a compact TV camera especially for industrial use.
camera can be placed where humans are not safe, due to obstructions, gases, danger of falling material, etc. Image 9 shows how an industrial television camera might be used in a mine disaster.

Nuclear research and work with radioactive material call for remote control operations in enclosures where no person may enter once the process has started. A television viewer to watch flow of materials, gauges, reactions, and in some instances to control mechanical robots, is of course the natural solution to the problem, as shown in Image 10.

Another version of the "chute" problem is seen in Image 11. Vehicular tunnels pose a problem of traffic control which requires policemen at a number of points along the tunnel. Monoxide gas makes the job dangerous and unpleasant, and accidents pose a hazard, as in the recent case where a guard in a New York tunnel was crushed when a truck got out of control. With the help of television, one man can do the work of a number, and do it in safety and comfort.

In many of these applications, color is quite unnecessary and is not used. In others, it is essential. For example, the effect of the fashion show of Image 2 would be reduced tremendously in black-and-white. Compare the models' dresses with the one on the cover, for example.

Image 4 is another good example where color is extremely useful. In many applications dealing with great heat, temperature is often estimated by color of metals or gases.

The same is true in observing chemical reactions, as in Image 10. Often the color of a solution is the most impor-
viser can use as wide a band as convenient. The Du Mont system illustrated on the cover uses 18 mc , the equivalent of three $6-\mathrm{mc}$ channels, with a mechanical wheel for color.

Hampered to some extent by its very originality and the fact that it presents previously unheard-of solutions to industrial problems, industrial television got off to a slow start, but has been making steadily increasing progress during the past year. There are now four main brands on the market: Vericon, with its new Vericolor; RCA's

Vidicon; the Utiliscope handled by Diamond Power Specialty Corporation; and the Du Mont 18 -me color equipment.
Of these, the Vericon, made by Remington-Rand, and originally described in Radio-Electronics March 1949, has recently added color, using the CBS color disc and a considerably wider band than the older monochrome equipment. Previous users of the equipment have been quick to realize the additional value of color and two large Vericon installations in college medical schools are now switching to Vericolor.
The RCA Vidicon has been used up to the present as a monochrome system, though its designers have pointed out that by using three Vidicon cameras to pick up the three primary colors, it can be adapted to color transmission.

The Utiliscope system is possibly the oldest of those described, and has a number of installations in various types of industry, some of which have been described or shown in photos in past issues of the magazine. No statement as to a proposed switch to color has been received from them as yet.
The Du Mont system uses standard equipment modified to operate at 180 fields per second. Unlike the other systems, it was designed primarily fr${ }^{*}$ color. Yet, where color is not needed, it is also available as a monochrome system. For example, the country-wide meeting of Schenley representatives, which was the first closed-circuit program to be "broadcast" was in black-and-white. This meeting consisted of 18 separate groups totalling more than 2.300 persons in cities as far apart as Boston and St. Louis. Transmission over long lines was the reason for use of monochrome in this case, as the frequency limits of the lines would have made color broadcast difficult.
Thanks are due to Diamond Power Specialty Corporation for the ideas underlying the larger num ber of the illustrations on pages 30 and 31 .

COLOR TELEVISION SYSTEMS

(Continued from page 22)

This problem has been solved with a synchronizing system in which timing pulses are transmitted to provide exact dot registry.

Many engineers point to these very problems, and the ones that still exist, as one of the strong points in favor of RCA's system. This admittedly crude development already produces images which some feel are equal to those of any system, and cannot lag far behind by anyone's reckoning. Yet the system is new and at the beginning of its development, whereas others are well in sight of the end of theirs. To say that a system shows great room for improvement may not always be praise, but it is a significant factor when planning for the future.
In typical RCA receiving equipment, three kinescopes are used, one for each of the primary colors. The separate colors are mixed with the aid of dichroic mirrors, which are transparent to two of the primaries and reflect the
third. The viewer sees a full-color picture on what appears to be the screen of the green tube, though actually the red and blue components are reflected from the mirrors. As stated before, a single three-color direct-viewing tube has been demonstrated, but is still in the developmental stage.
Besides the three methods described, a number of other incipient color television systems-not developed to the point of demonstration-have been proposed to the FCC. None of them are likely to replace one of the present systems as the final answer to color television, but the possibility cannot be excluded.

References

1 Television in Color. Fred Shunaman, Radio-Elec1 Television in Color. Fred Sh
tronics, January, 1950, page 28.
fronics, , Panuary, 1950 , page 28 .
2 2 New Picłure Tube
June, 1950 , page 27.
3 Color Television. Harry W. Secor, Radio-Crott. Part I, June 1947, page 20.
4 PPM-New Teehníque. Fred Shunaman, RadioCroff, February, 1946, page 314. Pulse Code Modulation, Fred Shunaman, February, 1948, page 28.

 $\left.\right|_{-1} ^{+}$

Fig. 1, left-The Strombery-Carlson TV-12 employs this version of the popular RCA synchrolock a.f.c. circuit. Fig. 2, right-Waveforms show how sync pulses are superimposed on the sine wave output of the GK6-GT horizontal oscillator.

Horizontal A. F. C. Circuits Used in Television Receivers

By Henry O. maxwell

BECAUSE the horizontal deflection generator is easily affected by weak signals, noise, and some forms of interference, the horizontal sync may be lost because of instability, maladjustments, and minor defects in the antenna, tuner, and video i.f. Several types of automatic frequency controls have been developed to hold the horizontal oscillator in sync with the horizontal scanning generator at the transmitter.
In the receiver, the horizontal deflection signal may be generated by a sine-wave oscillator, multivibrator, or blocking oscillator, and the frequencycorrecting voltage may be produced by several types of discriminators and phase detectors. To enable the service technician to give faster and more efficient service, we will discuss the theory of a.f.c. systems and deflection generators in this article.

The Synchrolock

Perhaps the best known of all a.f.c. systems is the RCA Synchrolock used in many versions of the 630-type chassis and in many other sets having 28 or more tubes. The circuit in Fig. 1 is used in the Stromberg-Carlson model TV-12. Other versions are used in the FreedEisemann 1620 C, Zenith 28 F20, and in sets of other makes and models. Com-
ponent values and tube types may vary, but the circuit operation remains the same.

The 6K6-GT is a Hartley-type horizontal oscillator operating at a natural frequency of 15,750 cycles. A 6AC7 reactance tube, connected in parallel with the tuned circuit, acts as a shunt reactance which can control the resonant frequency of the L-C network. The magnitude of the shunt reactance is determined by the bias voltage and transconductance of the 6AC7. With a fixed negative bias of approximately 2 volts, a change of 0.5 volt will change the oscillator approximately 100 cycles. The frequency shifts in one direction when the bias increases and in the other when it decreases.

The horizontal oscillator develops a sine-wave voltage across the secondary of the discriminator transformer T so that the cathode of one diode is negative at the instant that the other is positive. Negative sync pulses are fed to C1, R1, and R 2 which have a time constant which develops sharp pulses at the center tap of the secondary winding. These pulses are applied in phase to the cathodes of the 6AL5 sync discriminator. The amplitudes of the sine wave and pulses are constant. The mixture of sine wave and pulse causes D1 and D2 to conduct when their cathodes are driven negative and voltages are developed across R1 and R2, respectively. These resistors are connected so the algebraic sum of their voltages is produced be-

Fig. 3-Another circuit using a sine wave oscillator. Negative pips from the syne clipper are used to control the frequency of the horizontal oscillator.

Fig. 4-The Gruen a.f.c. circuit which is used in many of the late G-E models.
tween ground and the junction of R2 and R3. A network consisting of the $470,000-\mathrm{ohm}$ resistor R 3 and the $.005-$ and $0.1-\mu \mathrm{f}$ capacitors filters the control voltage and applies it to the control grid of the 6AC7.

When the oscillator is in sync, the pulses arrive at the instant the sine wave on the cathodes is crossing the zero axis, as shown at a in Fig. 2. The voltages across R1 and R2 are equal and opposite, and the net voltage is zero.

Consider what happens when the oscillator shifts frequency so the negative sync pulse arrives when the cathodes of D1 and D2 are negative and positive, respectively. (See c in Fig. 2.) During the first half of the cycle, D1 conducts and the voltage across R1 corresponds to the voltage on the cathode of D1. At the same time, the sine wave is positive on D2 and will conduct only for the duration of the pulse which has sufficient amplitude to drive the cathode negative. The voltage across R 1 being greater than that across R 2 , a positive voltage will be applied to the grid of the $6 \mathrm{AC7}$. The reactance tube draws more current, its effective reactance increases, and the oscillator frequency decreases.

The drawings at b show how a negative corrective voltage is produced when the oscillator is running too slow.

The output of the oscillator is coupled to the horizontal sawtooth generatoroften called a discharge tube-through a differentiator consisting of C2 and R4. The tips of the differentiated pulse cause the sawtooth generator tube to conduct and discharge the sweep-generating capacitor C3.

The horizontal drive control adjusts
the shape of the sine wave applied to the grid of the output tube and is therefore capable of affecting the linearity and size of the picture as well as the high voltage in circuits using flyback power supplies.

In the 630 and most other sets, the sync pulses are positive and the plate and cathode connections are reversed on the discriminator diodes.

Motorola circuit

Another circuit which uses a sinewave oscillator is employed in the Motorola TS-30A and similar chassis. In this circuit (Fig. 3), the negative sync pulses appearing at the cathode of the sync separator are differentiated by the $.002-\mu \mathrm{f}$ capacitor and the $10,000-\mathrm{ohm}$ resistor in the cathode return of the sync clipper. The diode passes the negative pulses and clips the positive pips. The negative pips, which correspond to the leading edges of the sync pulses, are used to control a 15,750 -cycle sine-wave oscillator consisting of L1, the two $.0015-\mu \mathrm{f}$ capacitors, and half of the 6SL7. This oscillator is locked in with the sync pulses.

The negative half of the sine wave across L1 drives the oscillator grid to cutoff and produces a positive pulse in the plate circuit. This plate waveform is differentiated by C1 and L2 to make a pulse which triggers the grid of the blocking oscillator consisting of the other half of the 6SL7. The time constant of the $500-\mu \mu \mathrm{f}$ capacitor and the resistance in the oscillator grid return determines the frequency of the blocking oscillator. The sawtooth which drives the horizontal amplifier is devel-
oped by the charging and discharging of C2 through R1 and R2. The voltage across R2 and C2 produces a negative spike which drives the output tube to cutoff during the retrace period.

Note that this circuit does not provide a corrective voltage to hold the blocking oscillator on frequency. Instead, it is triggered by a pulse derived from a sine wave. The locked-in sine-wave oscillator acts as a buffer to prevent noise pulses from riding through and affecting the performance of the blocking oscillator.

The Gruen system

The Gruen a.f.c. circuit used in the G-E 12 T 7 and other late $\mathrm{G}-\mathrm{E}$ sets is shown in Fig. 4. This circuit uses a 6AL5 balanced discriminator, and a 12SN7 reactance tube and sine-wave oscillator. The oscillator is controlled by the inductance of the tapped coil L and the capacitance of $\mathrm{C} 2, \mathrm{C} 3$, and C 4 . The reactance tube acts as a resistance in series with C 2 across the tank coil.
In this circuit, the discriminator produces a d.c. voltage having an amplitude and polarity determined by the phase difference between the sync pulses and the negative pulses at the plate of the damper tube. The negative sync pulses are applied to the cathodes and the pulse from the damper tube is integrated into a sawtooth by the $680-\mu \mu \mathrm{f}$ capacitor.
The peak-to-peak voltage of the sawtooth on the plates is approximately half that of the sync pulses fed to the cathodes. When the diodes conduct because of the presence of sync pulse or sawtooth alone, the voltages across the 1 -megohm load resistors are equal with opposite polarity, making the discriminator output zero.
The sync pulses charge C1 to approximately 60 volts and bias the cathodes positive by this amount. As long as this bias is on the cathodes, the sawtooth cannot cause conduction because its peak value is too low.

If the oscillator is in sync with the pulses from the transmitter, the pulses arrive at the instant that the retrace portion of the sawtooth crosses the zero axis and the voltages across the load resistors are caused by the portion of the sync pulse which is above the bias developed by C1. These voltages cancel

Fig. 5, left-The d.c. amplifier boosts the discriminator output to insure positive control over the horizontal oscillator. Fig. 6, right-A phase inverter does the work of the transformers which the discriminators in Figs. 1 and 5 use.
each other and therefore no d.c. voltage comes out of the discriminator.

When the oscillator is fast or slow, the sync pulse falls on the retrace of the sawtooth. Now, the sawtooth will add to or subtract from the sync pulse on the diodes and cause a difference in the voltages across the load resistors. The algebraic sum of the voltages-positive if the oscillator is fast and negative if it is slow-is filtered and fed to the grid of the reactance tube.

x = PLATE TO CATH VOLTAGE OF C2 DURING POSITIVE HALF OF SAW TOOTH
Fig. 7-W Weforms showing how the circuit of Fig. 6 controls the frequency.

If the correction voltage is positive, the plate-to-cathode impedance of the reactance tube will be lower and the capacitance of C 2 will have a greater effect on the tuned circuit and lower the oscillator frequency. A negative voltage increases the plate-to-cathode impedance of the reactance tube, the effect of C 2 is reduced, and the oscillator speeds up.

The . $0039-\mu \mathrm{f}$ capacitor and the series resistance to ground produce the sawtooth deflection voltage as do R1, R2, and C2 in Fig. 3.

A G-E circuit

The a.f.c. circuit in Fig. 5 is used in the G-E model 901. Here, an unbalanced discriminator or phase detector, d.c. amplifier, and multivibrator are used. A sawtooth from a special winding on the

Fig. 8-An a.f.c. circuit of the pulsewidth type which is used in some sets.
horizontal output transformer is applied to the center-tapped secondary of the a.f.c. input transformer. This volt-age-in phase at the ends of the sec-ondary-is compared with the sync pulses which are out of phase across the halves of the winding. The diodes con-
duct equally when the sync pulses coincide with points A on the sawtooth and the net d.c. voltage is zero.

If the sync pulse falls at any other point, the voltages across the diodes are unequal and a positive or negative corrective voltage is produced. After being filtered, the voltage is amplified by : d.c. amplifier and then applied to a grid of the multivibrator-type oscillator. The filter has a time constant which averages voltages over a frame rather than over individual lines, thus making the circuit less sensitive to noise and interference pulses.

The coil and capacitor in the cathode returns of the 6 SN 7 are shocked into a ringing condition which produces a sine wave. The charge-and-discharge capacitor C1 converts the sine into a sawtooth required for deflection.

Westinghouse a.f.c.

Another interesting circuit is used in the Westinghouse H-223. In Fig. 6, the sync pulses from the sync separator are fed to a phase inverter which develops equal pulses of opposite polarity at its plate and cathode. The positive pulse is fed to the plate of D1 at the instant that the negative pulse is fed to the cathode of D2. A square-wave pulse from the plate of the horizontal output tube is applied to the cathode of D1 and plate of D2 through an integrator (C1, R1, and C2) that converts the signal to a sawtooth which is alernately positive and negative. Note that the voltages on the cathode of D1 and plate of D2 are in phase while the sync pulses on the plate of D1 and cathode of D2 are 180 degrees out of phase.

Fig. 7 shows the operation of this circuit. At a, the arrival of the sync pulses coincides with the leading edge of the negative-going sawtooth. The sum of the negative cathode and positive plate voltages on D1 being greater than the positive sawtooth acting alone on the plate of D2, a negative d.c. voltage appears across $R 2$. The negative sync pulse is not shown at a because it is canceled by the negative sawtooth on the plate of D2.

At b, the pulses are centered over the trailing edge of the negative-going sawtooth and the leading edge of the posi-tive-going sawtooth with the result that the voltages developed during successive halves of the sawtooth cycle are equal and opposite and the net voltage across $R 2$ is zero.

At c, the pulses arrive on the trailing edge of the positive sawtooth, D2 conducts more heavily than D1, and a positive correction voltage is produced.

The sawtooth deflection voltage is generated by the 10,000 -ohm resistor and $.00033-\mu \mathrm{f}$ capacitor just as in the other charge-discharge circuits we have discussed.

Pulse-width system

Fig. 8 is one of several versions of the pulse-width a.f.c. system. This circuit, used in the G-E 810, operates in much the same manner as the RCA

Synchroguide. A single 6SN7-GT is the a.f.c. tube and blocking oscillator. The grid of the a.f.c. tube is biased to cutoff by the negative voltage applied to it through the $3.3-$ megohm resistor connecting it to the oscillator grid.

Positive pulses from the plate of the damper tube are converted to modified sawtooth waveforms and fed to the grid of the a.f.c. tube along with positive sync pulses. Neither voltage has sufficient amplitude to overcome the bias on the a.f.c. tube but their amplitudes can be combined to cause conduction.

When the oscillator is in sync (see Fig. 9), the leading half of the pulse is on the leading edge of the sawtooth and its trailing edge corresponds to the trailing edge of the saw. Thus the pulse is only half its normal width. The pulse falls higher on the sawtooth and more of it is clipped when the oscillator is fast. If the oscillator is slow, the full width of the pulse may fall on the leading edge of the sawtooth.

C1 and C2 charge during the time that the a.f.c. tube is conducting. The voltage on them is determined by the duration of plate-current flow. A portion of the voltage across these capacitors is applied as bias to the grid of the blocking tube. If the oscillator is slow,

Fig. 9-Waveforms showing pulse width differences of the circuit of Fig. 8
the voltage across the capacitor will be more positive than when the oscillator is in sync, the oscillator speeds up until the grid bias returns to its normal value.

Troubleshooting hints

Troubles in a.f.c. circuits can be numerous and may be caused by minor changes in the values of many components. These few hints are useful when servicing a.f.c. circuits

1. Always check the damper tube in circuits where the feedback voltage is taken from the plate of the horizontal output or damper tubes.
2. Check the feedback windings for open circuits and shorted turns in circuits like Fig. 5.
3. When replacing resistors and capacitors in the a.f.c. circuit, always use units having tolerances equal to or closer than those of the original. Check the parts list and diagram to be sure.
4. Check all tubes which are even remotely connected with the horizontal deflection circuit. Sync separators, d.c. restorers, clippers, amplifiers, and clamps can affect the operation of some circuits.

We plan to follow this article with another describing some of the tricks and short cuts which can be used in adjusting and servicing horizontal a.f.c. systems.

TELEVISION-CONTROLLED weapons are by no means a novelty. Indeed the first televisioncontrolled plane was proposed by the writer in 1924*.

It became a reality in World War II, when 34 of our B-17 and B-24 bombers, with automatic pilots and TV cameras in their noses were guided by radio right into the mouths of V2 hangars in occupied France.
Flying high over the English Channel our radio control planes guided the bombers accurately into the small openings of the hangars. Each bomber contained 2,400 pounds of TNT and Torpex which exploded on contact, atomizing the bomber as well.
During World War II our Navy and Air Force had also experimented with actual television bombs.
These tests took place at Lake Muroc, Cal. The bomb used had a TV camera in its nose and was steered by a bombardier who corrected the drop by changing the pitch of the fins on the bomb as it fell. But this bomb was not very effective as its direction could not be changed except during the first few seconds of its fall.

[^1]
Guided TV Bomb

By HUGO GERNSBACK

Improved television bombs of this type will certainly be used in future wars. As a guided weapon, such a bomb has a great many advantages which cannot be overlooked in future conflicts.

At present, bombing at very great heights is more or less a hit-or-miss proposition. Far too often only one or two out of ten bombs are effective. Particularly when aimed at a comparatively small target most bombs are ineffective. All bombs are subject to "drift": first because of the motion of the plane from which they fall, and second because of winds over the target. The bombardier is supposed to correct for such drift, but at best his aim is only approximate. Targets such as bridges, railroad tracks, etc., are particularly difficult to hit and usually a large number of bombs must be wasted to make a strike that will actually demolish such objects.

Moreover, the bombardier has to count on overcast weather and erratic flying when pursued by fighter planes or attacked by antiaircraft fire.

All this makes for a large waste of bombs. It is true that toward the end of World War II guided bombs came into use, but even these were not accurate in overcast weather, during fog, etc., even when radar was used.

If, however, radar and television are combined in such a manner that the bombardier can have the target outlined on his radar screen, then during the last stages of the television bomb fall (after it has cleared the clouds), the bombardier then can actually see the target and can make a better strike.

For this reason the television bomb will not only prove a formidable
weapon but will sharply reduce the waste of expensive bombs.
A television bomb for many reasons will have to be a large one, usually of the blockbuster or the large incendiary type. In its nose it will contain a television camera operated either by special powerful batteries or a small electric generator. Such a generator can be powered by an air turbine operated by the airstream as the bomb falls through the air, generating enough current to operate the television transmitter.
The television bomb has special fins and a tail, both of which can be moved by compressed air, stored in a tank in the bomb, to guide the bomb's fall accurately. The bomb is steered from the bomber by radio remote control in the usual manner of guided missiles. Thus the television bomb is a regulation guided weapon except that the television bombardier can watch on his television screen the EXact progress of the "falling" missile. By radio control he manipulates the bomb's flight accurately toward any target selected. On his television screen the bombardier can watch the bomb's progress through the thickest clouds, rain, fog, or snow up to the instant of the hit.
Nor is the extra cost of equipping such a missile with a television transmitter excessive. Large bombs of this type often cost up to fifteen thousand dollars and over.
As the television bomb is far more accurate than the regulation type, the few hundred dollars spent on a television transmitter is insignificant when the cost of the wasted bombs, normally expended on a target, is taken into consideration.

Picture Tube List

By F. WILHELM

Listing the physical and electrical characteristics of all magnetical ly deflected picture tubes, the chart opposite is prepared especially as an aid to planning conversions to bigger tubes. For this reason, the over-all size, deflection angle, type of focusing, and typical operating conditions are pushed toward the front where they won't be overlooked when making comparisons between tube types.

[^2]

Nヘ N 	Type of cathode－ray tube
NANN世 \square 	Dismeter of tube face （inches）
 	Over－all length of tube （inches）
	Construction of envelope
	Deflection angle in degrees （Horizontal）
	Method of focusing
 	Type of ion trap，if used
	Capacitance（uuf）between in－ ner and outer conductors when tube has outer coating
	Typical anode voltage （kilovolts）
	Typical accelerator or grid No， 2 voltage
	Contro：grid or cathode voltage for extinction of undefiected spot．Values are positive for cathode and negative for grid
	Maximum anode voltage （kilovolts）
	Maximum grid No． 2 volts
	Focus current in ma （See Note 6）
	Anode terminal
	Type of socket
	Color of face
	Base wiring diagram （Figure No．）
	Type of cathode－ray tube

Charts Identify TVI

Eliminating arithmetic, charts sim-

plify detection of radiating TV sets

By N. H. CROWHURST

NTERFERENCE with television reception can be caused by a variety of interactions between local oscillator or i.f. and other television channels. Articles have from time to time described methods of identifying the interference, but the tracking down to source involves repeated arithmetical calculations that become somewhat arduous. Use of the charts here presented will not only facilitate the calculations, but also help in getting a better visual understanding of the problem.

This kind of interference can be divided into two groups: Group 1, interference originating in the same receiver, and Group 2, that originating in another receiver. The solution of Group 1 problems is relatively simple, because all the causes of trouble are at the same site; but Group 2 can be more difficult, as cooperation with the owner of the interfering receiver is necessary, unless pickup from it can be eliminated by antenna orientation.

Interference from i.f. harmonic

Under Group 1, the simplest range of possibilities consists of stray coupling from the i.f. stages back into the r.f. section. It is harmonics of the i.f. that cause trouble, either sound or picture i.f. producing harmonics that can stray into the r.f. stages to interfere with either sound or vision channel. Charts 1 and 2 assist in identifying these possibilities. Chart 1 is for the lower band, channels 2 through 6 , and Chart $\&$ for the higher band, channels 7 through 13. The horizontal dotted lines indicate carrier frequencies, the thick horizontal lines the boundaries between adjacent channels. Thin lines divide sound and vision on the same channel.

Use of the chart is simplicity itself. The diagonal lines indicate where the
various harmonics fall. For instance, a receiver has the common video i.i. of 25.75 mc . Locating that point (threequarters of the way between 25 and 26 on the bottom line) and laying out a vertical line from that point, we cross the 3rd harmonic line in channel 5 very near the picture carrier. Obviously i.f. 3rd harmonic is suspect if channel 5 is being interfered with.

Conversely, if interference is experienced on channel 3, only i.f.'s between 21 and 22 mc would be likely to cause it. If the set's i.f. is higher and there is no other nearby receiver, the trouble is likely to be from some other cause.

Because the vision channels occupy most of the available spectrum, interference is most likely to appear in them, but there are also narrow ranges of i.f. at which interference may appear in a sound channel. The 2nd, 3rd, and 4th harmonics can cause interference in the lower band. Second harmonics of i.f.'s between 27 and 30 mc can cause interference on channel 2. Just below 30 mc the interference will be in the sound channel. Third harmonic can cause interference on channels 3 to 6 , according to value of i.f., and the 4th can cause interference on channel 5 or 6. As detailed in Chart 2, the 6th to 10th harmonics can cause trouble in the higher band. Harmonics of the sound i.f. can cause serious picture interference, too.

Image interference

Still considering Group 1, the next possibility is the old second-channel (image) trouble, and other channels that can produce the i.f. by mixing with harmonics of the oscillator instead of its fundamental. Presence of harmonics indicates that the oscillator waveform is poor. All these sources of interfer-
ence usually show up when the interfering channel is strong in comparison with the received channel.
Char't 3, use of which is demonstrated in the key at the right-hand bottom corner, will help in tracking down possible interfering channels for any chosen i.f. and oscillator frequency combination. As represented by the arrow heads showing direction of reference, b is the received channel. (In this particular set the oscillator frequency is below r.f. carrier frequency.) Oscillator frequency is found by connecting with a straightedge the vision carrier in the received channel on the scale at the extreme left of the chart with the i.f. in the section marked osc. low, and interpolating on the osciltator fundamental scale. The secondchannel (image) frequency is indicated at a on the key, using the same i.f. in the section marked osc. high. Second and 3 rd harmonics are located on their respective scales by aligning the zero at the bottom of the television chanNELS scale at the left, with the oscillator frequency already interpolated. From these points, reference through the same i.f. value on the other I.f. ref. scales, as indicated on the key, will show at points $\mathbf{c}, \mathbf{e}, \mathbf{f}$ and h possible channels that can interfere.

For example, interference may be received on channel 4. The receiver i.f. is the familiar 25.25 mc , with the oscillator working on the high side of the fundamental. Drawing a line from channel 4 through osc. HIGH intersects the fundamental scale just above 90. A line is drawn from zero on the television CHANNELS scale through this point, intersecting the 2nd and 3rd harmonic scales. From these latter points lines are drawn through both high and low 25.25 of the I.F. ReF. (interference can

Chart 1-I.f. harmonic interference chart for low-band TV.

Chart 2-High-band i.f. harmonic interference chart.

TELEVISION CHANNELS

Chart 3-Nomograph for tracking down interference with any combination of intermediate and oscillator frequency.
be produced when the oscillator harmonic is either 25.25 mc above or below another station) to the television channels scale. Point c is found to be between the television bands, but point e falls directly on channel 13 . Points \mathbf{f} and h fall above the television bands. The 2nd harmonic of the oscillator is 25.25 mc below channel 13 , and this channel is the probable source of interference. Note that an image of the
fundamental (drawn from the fundamental scale through osc. Low) would fall between the television bands, and could also be ruled out as a cause of interference.
If the oscillator is on the high side of the video carrier frequency, then the direction of reference indicated on the key will be reversed-a might be the received channel and b the secondchannel frequency.

K-C Technicians Organize For TV

Over 20,000 receivers were in operation within seven weeks after television came to Kansas City, Mo. (the highest count in any area in the same period). This debut was unmarred by unruly technical problems or discontent among the set owners.

Video owes its sntooth introduction to Kansas City largely to the foresight of four men who saw the service problems which confronted service companies in other cities and prepared the way for TV by forming a plan to mold a nucleus of qualified technicians to make installations and do serviee work.
These men are: Robert Sanson, executive secretary of the Electrical Association of Kansas City; C. W. Donaldson. president of the Donaldson Radio and Electric Co.; Avery Fouts, service manager of the Jenkins Music Co.; and C. L. Foster, vice president of the Central Radio and Television School. Under their guidance and with the cooperation of other dealers and distributors, a new organization called the Television and Radio Technicians was formed.

Functioning under the wing of the Electrical Association, the primary objectives of this new organization are:

1. To improve the status of the radio service industry through education and association.
2. To prepare for television with an approved course of study.
3. To operate an employment agency for dealers and distributors seeking reliable technicians.
4. To keep membership in TRT open to industry members who measur: up to its technical and ethical standards. A special arrangement was made with the Central Radio and Television School to train 60 selected radio repairmen in a streamlined 42 -week night
course. Stripped of all nonessentials, the course included basic electronic and television principles with lectures and study assignments, and laboratory work geared to prepare the student for worlsing with television receivers.
The course is divided into three semesters which cover both lectures and workshop activity. Students go to school two nights a week, with one night devoted to lectures and the other to the laboratory work. Before graduating, each student must demonstrate his fitness in practical work and prove his knowledge before an examining board.

Distributor aid was enlisted to help cover the cost of the course, and 11 of the 14 wholesalers in the area underwrote the course by contributing $\$ 125$ apiece. The small balance in tuition is paid by the students.

Believing that one's education is never complete, TRT also runs a weekly clinic for practicing technicians as well as students in the school. Meeting each Thursday night from 6:30 to $9: 30$, the technicians bring in their tough problems, discuss them, and exchange suggestions. If a problem is too difficult for the clinic to cope with, one of the school's engineers is called in to help.

Regular once-monthly meetings are held for all nembers of TRT. At these sessions the executive committee sounds out the members on how the organization can improve its program, especially academically. Meetings also include at least one talk by experts in the field.

Publicity is another part of its program. Promotional tie-ups with electrical shows are arranged. A monthly newsletter, decals for shop windows, leaflets, display ads, lapel pins, and tool box emblems help to bring the setup to the public's attention.-Grier Loury

Joe W. Allen receives first television training diploma from instructor Foster.

Oscillator radiation inferference

Finally, in Group 2 comes the interference radiated by the local oscillator. in another receiver set for reception of another channel. Chart 3 may be used for working out such possibilities, using the zero points on the I.F. REF. scales for 2 nd and 3rd harmonics. As shown on the key, b or a might be the channel to which the interfering receiver is set, using the oscillator fundamental common to both, and possible channels where interference could be caused on another receiver are indicated by points d and g.

Starting from the interference received, the construction is shown by Chart 4. The channel where interference is picked up is at a. Reference through the zero points on the I.F. REF. scales to their respective harmonic scales, and back to the zero on the TELEVISION CHANNELS scale, gives two possible oscillator frequencies on the oscillator fundamental scale. Reference through the I.F. FUND. scale will show four possible points on the frequency spectrum, represented in Chart 4 by b, c, d and e, for the channel received by the interfering receiver. Generally two or three of these will he eliminated as being outside TV channels: or having no service in the area.

Suppose, for example, that interference is being received on channel $1 \because$. and a receiver with a $25.25-\mathrm{mc}$ i.f. is suspected. Let channel 12 be a and draw lines through the 2nd and 3rd harmonic zeros to intersect the 2nd and

Chart 4-Example of the nomograph's use.

3rd harmonic scales, then back to zeru on the television channels scale. The two possible oscillator frequencies intersected are a little above 102 and 68 me. Drawing lines from these points of intersection through osc. HIGII 25.25, we find that the receiver could cause such interference by 2nd harmonic radiation when tuned to channel 5 . represented by d in Chart 4. Point is below the television band.

The author received considerable information and assistance from the August and Septenmer, 1950, copies of Philco Service Merchondiscr and RCa Dutu Sheet 1950 T11 (Supplementary information on Models T100, etc.) and wishes to express his appreciation to the publishers of these issues and to the compilers of the television interference articles contained in them.

RADIO.ELECTRONICS for

Servicing Picture Tube Circuits

By CARL J. QUIRK*

T-HE most expensive single item in a television receiver is usually the cathode-ray tube. This-plus the current shortage of these tubes-discourages the average service shop from carrying spares. The many different types used in postwar television receivers further complicate the situation.
Therefore it is very important that the television service technician know how to isolate troubles that might be caused by a defective picture tube. He must know the various picture tube circuits currently in use. He also must understand the adjustments that directly affect the cathode-ray tube and know how to make these adjustments.

Fig. 1-An ion burn appears as a small round spot at the center of the raster.

The technician who does not have the "know-how" to diagnose picture tube troubles is at a distinct disadvantage if, for example, he is called upon to service a 19 - or 20 -inch set located in a difficult position (on a wall) in some public place, as a wrong guess that the picture tube is defective will result in a great deal of unnecessary work without fixing the receiver.

In one case an apparently inexperienced service technician diagnosed a condition as a faulty picture tube. The set owner (unimpressed by his apparent ability) called in another and more experienced serviceman. The second technician found a defect in the cable supplying filament power to the cathode-ray tube.

Since the magnetically deflected and focused tube is most common today, this article will deal primarily with defects of this type tube. There will be a few references to electrostatic tubes and certain interesting defects that could exist only in sets with these tubes.

Some of the following troubles are obviously caused by picture tube failure of one sort or a nother. There are,
*Technical Service Section, Teleset Service Dept., Allen B. Du Mont Laboratories.
however, several conditions that could be the fault of some other component or circuit in the receiver. The important thing is to determine whether the picture tube is at fault or a contributing factor.

Ion spots

The round dark spot that appears in the center of the raster in Fig. 1 is an ion buin or ion spot. Such a spot can exist in any electromagnetic-type tube that does not use some means for preventing it.
As shown in the figure, the spot is at the center of the screen and is about the size of a fifty-cent piece. These ion spots-or ion burns as they are sometimes called-are a result of gas ions forming a cluster on the screen of the cathode-ray tube. With magnetic deflection the amount of deflection is inversely proportional to the mass of the object deflected. Ions are many times heavier than electrons and so are not normally deflected. Thus they form the cluster at the cathode-ray tube face, with the resultant ion spot.

A certain amount of misinformation concerning ion spots has found its way into the field. The following presentation of facts concerning ion spots may help to offset some of it.
Ion spots do not occur in electrostatic deflection tubes. (In electrostatic tubes the ions and electrons are deflected equally.)

Ion spots do not occur in metalbacked (aluminized) tubes. Due to the low velocity at which ions travel as compared to electrons, they do not penetrate the metallic layer as do electrons.

Ion spots do not result from the afterglow that occurs on many sets immediately after they are turned off. (In many cases technicians have advised their customers to turn the brightness to maximum before shutting off the set. This eliminates the bright spot at the center of the screen which was thought to produce the ion burn.)
The ion spot is more noticeable if the high accelerating voltage is lower than normal. (This reduces the velocity of the electrons and keeps them from penetrating the ion cluster.) In other words, if the ion spot is visible at 8 kv and the high voltage is raised to 12 kv , it may no longer be present. However, this is not practical, since the higher voltage reduces picture size.
An ion burn is visible only when a raster is present. Thus, if the screen is actually burned due to a sweep failure, the burn is visible whether or not the raster is present.
Ion burns do not normally exist in tubes using ion traps. However, there
have been a few cases of ion burns in such tubes.
A correct conclusion that the reader will undoubtedly come to from the above information is that in an electromagnetic tube that does not use an ion trap, zothing can be done to prevent the condition from occurring. If the condition is annoying, the only cure is to replace the picture tube. Picture tubes using a straight gun with no means for trapping the ions are no longer manufactured. Instead a replacement tube with provision for ion trapping is used. For example, the 12RP4, which has a bent gun, replaced the 12.JP4 that used a straight gun. The bent-gun-type 15DP4 replaced the 15AP4, a straight-gun tube.,

Ion traps

Ion spots may be eliminated by one of two methods. (This applies to the design of the tubes since there is no field cure other than a tube replacement.)

Use a tube with a metal-backed screen. These tubes, the 12 KP 4 for example, have a phosphor screen with a very thin aluminum coating on the back surface. As long as the accelerating voltage is high enough, the electrons will pass through this very thin metallic backing. The ions, however, because of their mass, travel much slower and cannot penetrate the metal-

Fig. 2-Two types of electron gun that use magnetic traps to prevent ion burn.
lic backing; consequently no ion spot occurs.

The second and more popular method of overcoming the ion-burn problem is to use either a bent electron gun or what is known as a slashed-field gun.

Fig. 2 illustrates what is meant by a bent gun and a slashed-field gun. From a service technician's viewpoint the important difference between them is that the bent gun, as normally used, requires a single magnet for proper beam bending, while the slashed-field gun, as normally used, requires a double magnet for beam bending.

Cathode-ray tubes with slashed-field guns often use a double electromagnet. The magnet has a large coil and a small coil. The small coil should go forward on the neck of the tube, and the large coil toward the rear. If the
magnets are reversed, the raster, if any, will be very weak.
If a double permanent magnet is used, the weakest magnet is toward the front of the tube.

Ion trap adjustment

Adjustment of the ion trap magnet (or beam bender, as it is sometimes called), although simple, is exacting. Follow the procedure exactly as outlined below. In some cases, even though the procedure is followed carefully, the desired results may not be obtained. Factors that may account for this condition are listed after the procedure. Originally established for adjustment of single-magnet beam benders, this procedure may be used equally as well with the double-magnet beam benders.

Make all initial ion trap adjustments at the lowest possible setting of the brightness control. The correct position for the ion trap magnet is shown in Fig. 3. With the base end of the gun pointing up as shown, slide the magnet over the neck. The north pole should be to the left adjacent to pin No. 12 and the south pole to the right adjacent to pin No. 6. The magnet should be placed about $1 / 4$ inch in back of the bend in the gun for the first adjustment.

Rotate the ion trap magnet about an eighth of a turn each way and slide it

Fig. 3-The correct starting position for the trap magnet when adjusting it is about $1 / 4$ inch behind the gun's bend.
back and forth along the neck, stopping at the point of maximum brightness. Keep reducing the brightness as the system is brought into line to avoid damage to the tube. After alignment at low brightness, make a final adjustment with the brightness control set to where the raster just starts to "bloom". At this point the raster begins to expand rapidly or to defocus.

If no raster appears and all other conditions are normal, the magnet polarity may be reversed. Rotate the magnet through half a turn around the neck. Then make adjustments as before; if there is still no raster, try another magnet.

Do not leave the tube on any longer: than necessary when making preliminary adjustments. If the electron beam is operated at high intensity hefore being brought into line with the ion trap magnet, it may damage the internal structure of the tube. For the same reason, it is important that the final adjustment of the magnet be made for maximum screen brightness. Failure to do this may result in burning the limiting aperture or the release of gas into the tube.

Sometimes it is possible to get two
brightness maximums when moving the ion trap magnet back and forth along the neck. The correct position is the one closer to the base of the tube. The second maximum is usually found when the magnet is close to the case of the focus coil. The magnetic shunting effect of the focus coil case on the ion trap magnet changes the field strength so that a brightness maximum is obtained in this incorrect location. Tubes should not be operated at the second maximum since spot centering is disturbed and there is a possibility of tube damage.

If the above procedure does not produce the desired results, investigate these possibilities:

The magnet may be bad. If it has been dropped, it may be completely demagnetized. To check, simply bring the magnet into contact with some magnetic metal and note if there is any attraction.

If the magnet has some magnetism, it may not be strong enough. If this is the case, a very dim raster will be present, accompanied by a bluish or greenish glow from within the electron gun. This glow indicates the electron beam is striking the limiting aperture disc instead of passing completely through the aperture. This condition may damage the tube.

The magnet may be too strong. This is not meant to imply that a magnet increases in strength with age. Recently Du Mont redesigned the bent gun used in their Teletrons to obtain better over-all focus. This redesign reduced the magnetic strength necessary for proper beam bending. All Du Mont Teletrons using the new design gun bear the letter X, Y, or Z immediately following the serial number.

Using an accelerating voltage of 12 kv in each case, the magnet strength necessary for the old tube was 58 gauss compared to 42 gauss for the new tube. Thus, if a 58-gauss magnet is used with a new tube, it is necessary to move the

Fig. 4-A protection circuit for the picture tube that prevents the screen from burning in case the sweeps fail.
magnet back toward the base of the tube until the raster appears. In some cases it may be necessary to place the magnet on the base of the tube. If necessary, a magnetic shunt (a paper clip in an emergency) may be used to reduce the magnet strength so it can be put on the neck of the tube instead of the base.

No raster, normal sound

When this occurs, the owner of the television receiver invariably wants to
know if his picture tube has gone bad.
Check to see if the filament of the picture tube is lit. If not, the cause may be one of the following:
The cable connector attached to the base of the CRT may be defective. Press the cable socket against the tube base to make sure that the connection is good. Carefully jiggle the leads in the cable that supply the filament power.

Check the filament continuity of the picture tube. Obviously, an open filament means that a new cathode-ray tube is necessary.
If these two checks reveal no defects, measure the voltage at the cable terminals. If the picture tube is operated in parallel with the other tubes in the receiver and they are all lit, then the trouble must be due to defective wiring. In some receivers a separate transformer or a separate winding on the power transformer is used for the cathode-ray tube filament. In these sets the trouble could be due to the separate transformer or the winding of the power transformer being defective.

Check for the presence of adequate high voltage. The best method, of course, is actually to measure the high voltage with a meter. Certain electronic-type voltmeter's have high-voltage probes that can be used for measurements up to 30 kv . If a meter is not available, the presence of high voltage can be checked by drawing an arc from the high-voltage lead with a pencil or a well-insulated screwdriver. The highvoltage lead should not be shorted to ground as it may damage the power supply. Simply bringing the insulated screwdriver in light contact will cause arcing if high voltage is present. Obviously, if there is no high voltage or if the high voltage is very low, the picture tube is immediately eliminated as the cause of the trouble, as it is very seldon that two troubles occur simultaneously.

Check the ion trap adjustment. This possibility, of course, depends upon the conditions under which the receiver is being checked. If the receiver is being operated for the first time in the field or if it has been moved from one place to another, then the ion trap could be at fault.

Chesk for leaky sweep coupling capacitors in receivers with electrostati: tubes. It is possible that a coupling capacitor between the sweep amplifiers (vertical or horizontal) and the deflection plates in the cathode-ray tube is leaky. This puts excessive d.c. on the deflection plates and positions the beam so far off center that it strikes the side of the tube and produces no raster. The range of the centering circuits is usually insufficient to return the beam to its normal path. This condition may easily be mistaken as being caused by a bad cathode-ray tube.

Measure the d.c. voltage between the grid and the cathode of the cathoderay tube. Most cathode-ray tubes will cut off if the difference in potential between grid and cathode of the cath-ode-ray tube is 50 volts or more (grid
negative with respect to cathode)
If the difference in potenial between the grid and cathode is more than -50 volts and cannot be lowered by the brightness control adjustment, obviously something is wrong with the circuit and not the picture tube.

Such a condition could possibly occur in some of the early post-war TV receivers. Among the many features found in these sets is a sweep protection circuit. The function of the protection circuit is to prevent the possibility of burning the screen if either horizontal or vertical sweep circuits should fail. If one or both sweeps should fail, the voltage at the cathode is raised so that the beam is cut off.

The portion of the circuit at the picture tube is shown in Fig. 4. A volt-age-divider circuit consisting of $R 1$ and R2 is connected from B-plus to the cathode and through the brightness control to ground. With the receiver operating normally, the relay is energized and shorts out R2. The brightness of the tube is then adjusted as usual by the brightness control.

If, however, one of the sweeps fails, the relay coil is de-energized and $R 2$ is re-inserted into the circuit. Under this condition the voltage at the cathode rises to a high value. Since the resistance of the brightness control is so much lower than R2, it has little effect.

If the service technician is not aware of the sweep protection circuit and does not check the grid-cathode voltage, he might think the picture tube is bad.

Distorfed raster

Distortion of the raster as shown in Fig. 5 is caused by a tube defect often mentioned in the literature but seldom found in the field.

The photograph is of a 19AP4 metalcone tube, a portion of which was magnetized. The raster is pulled up in the left corner at point A and to the side at point B. Points A and B constitute the poles of a bar magnet, the bar consisting of a section of the metal cone.

This magnetization of the metal cone is a result of close contact with a strong magnetic field. The most likely strong magnet to be encountered is the magnet of a PM speaker. Obviously, if a motalcone tube is placed on a workbench, it should not come in contact with a speak?r field or any other source of magnetization.

If this condition occurs, the cone may be demagnetized by placing the magnetized portion in a strong a.c. field. The magnetized part can be located with a compass.

An a.c. field capable of demagnetizing the cone may be produced with a focus coil. Remove the case of the focus coil and apply a.c. to it though a Variac. The Variac is used to prevent excessive current flow through the focus coil with resultant overheating of the coil.

To demagnetize the cone, energize the coil and move its flat side over the magnetized area. Do not interrupt the a.c. while the coil is near the cone. The cone should be well out of the field of
the coil before the coil is de-energized.

Unstable sync

Indications of unstable sync vary according to the type of sync circuits used. If the horizontal sync circuit is a simple blocking oscillator, the picture will tear horizontally. Strips of the picture will tear out to the right. This condition is characteristic of the blocking oscillator circuit when no special a.f.c. circuit is used to control its frequency. It is also possible that the picture will jump vertically, indicating loss of vertical sync.

Fig. 5-A metal tube may distort the picture if its envelope is magnetized.

On sets using a horizontal a.f.c. circuit, the picture will try to pull out of sync horizontally, but the effect will not be the same as that for the simple blocking oscillator. The vertical sync will also be affected.

If this condition is a result of gridcathode leakage in the picture tube, advancing of the brightness control will eliminate the sync instability. The reason for this will be explained later.
In some of the troubles listed previously, the visual indications were such that the picture tube was thought to be at fault before any checks were made. With this trouble, the cathoderay tube is usually the last thing considered and even then the technician may not be certain exactly how the cathode-ray tube affected the sync.

Fig. 6 is a circuit of the type in which the above-mentioned symptoms would be caused by the C-R tube.
The sync take-off point is at the picture tube grid. The 6AL5 functions both as the d.c. restorer and sync takeoff tube. The composite video signal is applied to the 6AL5 cathode, and at this point the video signal is black negative; that is, the portion of the signal that corresponds to black in the picture extends in a negative direction. The sync pulses also extend in the negative direction.
In normal operation, this black negative signal drives the cathode negative and permits the diode to conduct. However, this tube conducts only during the most negative portion of the sig,ral; i.e. during the sync pulses. In this manner the sync signals are removed.

Let us assume that leakage exists between the grid and cathode of the picture tube. When adjusted for beam cutoff, the brightness control is so ad-
justed that the potential of the cathode is about +50 volts. However, with the leakage path between the grid and the cathode, some of this voltage appears at the 6AL5 cathode. In some cases this voltage may be as high as +30 . This voltage biases the 6AL5 so that the applied signal must overcome this voltage before the tube will conduct. Thus, most of the sync is lost and the horizontal and vertical sweeps are unstable.

Advancing the brightness control will restore the sync to a stable condition, but this will result in very poor contrast due to excessive brightness. Increasing the brightness results in running the cathode toward ground and thus reduces the voltage at the cathode. If the cathode voltage is zero, the 6AL5 will have no bias due to the grid-cathode leakage.
The circuit shown here was used in the Du Mont RA-103D Teleset. A number of other receivers in the field use a similar circuit arrangement. Similar indications can be expected in any other receiver if there is a d.c. circuit between the grid of the picture tube and the sync separator tube.

No brightness control

If the brightness control fails to affect brightness there may be a heatercathode shor't or leakage in the picture tube. In many receivers, the brightness control is located in the cathode cir-

Fig. 6-Grid-cathode leakage may cause sync instability in circuits like this.
cuit and one side of the filament goes to ground. For this reason, a heatercathode short will short out the brightness control. Fig. 6 shows such a circuit.

This condition sometimes can be cleared by lightly tapping the base of the cathode-ray tube. It is also possible to burn out the short by applying d.c. between the heater and cathode.

A positive solution (other than replacing the tube) is to use a separate filament transformer to supply the cathode-ray tube heater.

Disconnect the filament circuit from ground and its usual filament supply and connect it to the secondary of a 6.3-volt, $0.6-\mathrm{amp}$ transformer. The transformer will permit tying the heater to the cathode. With the filament isolated from ground, the brightness control functions normally.

These troubles do not include all the possibilities involved in picture tube circuits. The service technician should acquaint himself with other possibilities that might exist. Often a little brainwork will save the cost of a new picture tube.

\section*{TV

 | | ALABAMA | |
| :--- | :---: | ---: |
| Birmingham | WAFM-TV | 13 |
| Birmingham | WBRC-TV | 4 |
| | ARIZONA | |
| Phoenix | KPHO-TV | 5 |
 CALIFORNIA
 | Los Angeles | KECA-TV | 7 |
| :---: | :---: | :---: |
| Los Angeles | KFI-TV | 9 |
| Los Angeles | KLAC-TV | 13 |
| Los Angeles | KNBH | 4 |
| Los Angeles | KTLA | 5 |
| Los Angeles | KTSL | 2 |
| Los Angeles | KTTV | 11 |
| San Diego | KFMB-TV | 8 |
| San Francisco | KGO-TV | 7 |
| San Francisco | KPIX | 5 |
| San Francisco | KRON-TV | 4 |
| CONNECTICUT | | |
| New Haven | WNHC-TV | 6 | Station List

Wilmington WDEL-TV

DISTRICT OF COLUMBIA Washington WMAL-TV Washington WNBW $\begin{array}{ll}\text { Washington } & \text { WTOP-TV } \\ \text { Washington } & \text { WTTG }\end{array}$ FLORIDA
Jacksonville WMBR-TV 4 Miami WTVJ GEORGIA
Atlanta AtlantaWAGA-TV ILLINOIS

Chicago	WBKB	4
Chicago	WENR-TV	7
Chicago	WGN-TV	9
Chicago	WNBQ	5
Rock tiand	WHBF.TV	4

INDIANA

$\begin{array}{llr}\text { Bloomington } & \text { WTTV } & 10 \\ \text { Indionapolis } & \text { WFBM-TV } & 6\end{array}$ Indianapolis WFBM-TV 6

Shati, chNNII4
ROCK $15 L A N D . I L I M O I S$

Station of Stars

EACINNATI OHIO

SEE ABD MEAR YOUR FAVOAITE STAAS OM

The collumbus dispatch station

Norfolk Richmond
WASHINGTON
Seattle KING-TV WEST VIRGINIA
Huntington WSAZ-TV WISCONSIN
Nilwaukee WTMJ-TV OTHER AMERICAN STATIONS BRAZIL
*Rio de Janeiro PRG-3 TV

CUBA

Havano
*Havana CMUR-TV CMQ-TV MEXICO

* Mexico City XEW Mexico City XHTV
*Stations not operating af time list was compiled.

Trends in Television I.F.'s

THE television receiver i.f. system must receive and amplify the desired television signal while closing the door on all undesired signals. Two types of i.f. systems are used in today's receivers-intercarrier and dual channel, (Fig. 1). Dual-channel systems have separate i.f. sections for picture and sound, which are segregated at the mixer output or in first and second following i.f. stages. Picture and sound intermediate frequencies are, respectively, local oscillator minus received picture carrier frequency and local oscillator minus received sound carrier frequency.

Fig. 1-The two i.f. types compared.
In the intercarrier system, the amplifier tubes that follow the mixer amplify and pass both picture and sound i.f. signals-building up the picture carrier to a higher level than the sound carrier. The picture carrier dominates at the video detector and the sound signal appears to it as a sideband of 4.5 mc . The video detector interprets this intercarrier beat between two carriers. The sound component of 4.5 mc is pulled from the composite video signal at the video detector or first video amplifier output and goes to a $4.5-\mathrm{mc}$ i.f. strip.

Intercarrier system

The intercarrier system has a number of potential advantages:

1. Oscillator drift problems are minimized. Thus oscillator tuning should not be critical because the sound frequency in the $4.5-\mathrm{mc}$ i.f. strip cannot vary with local oscillator tuning but is fixed at the original frequency separation of picture and sound carrier frequencies at transmitters. Thus tuning can have as its major objective-a good picture. Correct sound follows along with this adjustment for best picture.
2. The i.f. system can be simpler, less expensive, and (in some respects) easier to align. For example, sound-channel trap is not needed as sound is not blocked from the i.f. circuit. Absence of traps reduces the susceptibility of the system to phase distortion.
However, intercarrier units have been plagued by high noise levels in sound output. This intercarrier buzz level is so much a function of correct alignment,

By EDWARD M. NOLL

tuning, and even contrast setting that the good possibilities of the intercarrier method are obscured. The major source of intercarrier noise is the interaction, in fact, the modulation of the sound by picture information. This noise can be minimized (usually it cannot be eliminated) with a superior limiter circuit or gated beam limiter-discriminator, and very careful alignment (particularly the secondary of the discriminator transformer). Note that signal interference in an FM system (the source of interference is picture signal and its relative levels with respect to $4.5-\mathrm{mc}$ FM sound) not only introduces amplitude modulution of sound but $F M$ and phase-modulated noise components. Thus a good limiter is not the complete answer. Response patterns of typical dualchannel and intercarrier systems are presented in Fig. 2.

Note that in the intercarrier stages of many models there are no adjacentchannel picture or sound traps. As a result interchannel spillover is very prevalent in those areas where adjacent channels have been allocated or in fringe areas where stations come in from various directions and levels.
Alignment of the typical intercarrier circuit is critical, because position of the picture carrier at 50% level is important from the standpoint of resolution and low-frequency response. Likewise it is very important to position the sound carrier down in the shelf to obtain a high sound level as well as low buzz.
In a video i.f. system, gain is a function of bandwidth and the number of stages. If to economize we reduce the number of stages, the necessary gain is obtainable only with a sacrifice in bandwidth. Speaking generally, resolution up to 4 mc can be obtained with four i.f. stages; 3 to 3.5 mc with three stages; and 2.5 mc with two stages. It is ironic that a few of those manufacturers who criticized the CBS color system because it is limited in geometric or horizontal resolution, market a black-white receiver decidedly inferior to the color resolution. Certainly there is no excuse, economic or otherwise, for an i.f. response down 6 db only 2.5 mc away from picture carrier frequency.

Interstage coupling circuits

Several basic interstage coupling circuits are used in the late model television receivers - stagger single- or double-tuned transformer, overcoupled, and bandpass (Fig. 3). Stagger-tuned types are still the most common, although the bifilar type of winding is widely applied. More gain per stage can be obtained with the double-tuned type of transformer although alignment is slightly more difficult.

The bifilar type of stagger-tuned
transformer has a number of advantages over simple stagger-tuning

1. There is more effective isolation between output of one stage and input of next. No coupling capacitor is needed and a leakage problem is eliminated.
2. The grid time-constant is very short (no coupling capacitor) and strong noise bursts cannot charge the capacitor. This means that the signals have an open path and noise does not block or lower gain of the i.f. stages for an interval after each noise burst.

A bifilar winding consists of two separate windings positioned very near to each other and wound in the same direction. The usual form of bifilar winding in i.f. strips is a primary and secondary interwound (turn of primary, turn of secondary, turn of primary, etc., down the coil form). Turns are close-wound and often use thin triple insulation to prevent any d.c. leakage. Very close proximity produces almost perfect $1: 1$ coupling. Thus windings act as single inductor with the same resonant characteristics as a single-winding staggertuned stage-only one resonant adjustment is necessary.

The most important advantages of the stager-tuned type of i.f. circuit are simple alignment procedure and far less trouble with regeneration, as each resonant circuit is tuned to a different frequency. A few receivers use two or three stagger-tuned i.f. stages and a single overcoupled stage. This expedient helps in obtaining a wider and more uniform response curve when just a few i.f. stages are employed.

Fig. 2-Response curves of both systems.
There is a definite trend toward higher-frequency i.f. systems to minimize some of the more trying tuner problems. Wider frequency spacing between signal carriers and local oscillator means better tuner selectivity. Consequently, there is weaker oscillator feedback to the antenna system, a better image rejection ratio, and no local oscillator interference is caused on other channels. Although local oscillator frequencies are moved outside of the television band with the higher intermediate frequencies, radiation can still cause interference to other services. The FCC feels this radiation can be held down to 15 microvolts per meter at 100 feet. RMA believes receiver manufacturers can hold it down to 50 microvolts
without too high a cost factor. In spite of these opinions, our present receivers often radiate signals in the thousunds of microvolts per meter at 100 feet.

Mixer to i.f. amplifier coupling

On the modern TV chassis there is always a substantial physical spacing hetween the mixer output of tuner and the first i.f. amplifier tube. An appreciable length of line must span the gap. This line is subject to capacitive losses to ground and stray pickup unless it is a low-impedance link. Low-impedance links, as typified by RCA and Zenith in Fig'. 4, also minimize feed-through of spurious signals from the tuner as only resonant signals will be transferred. Only a resonant signal sees a low impedance via the link.

Any capacitance adderl by the link, although this might be rather high on long links, has an insignificant effect on the low-impedance connection. The added capacitance does not cause loss of signal, merely reducing somewhat the impedance of the link. It lowers reactance of the mutual element that controls coupling between the two tuned circuits. This can be compensated for in the design of the coupling arrangement.

A.g.c. system

In the modern receiver an a.g.c. system becomes an integral part of the i.f. unit, maintaining close control over the gain of the i.f. system. This control is fast acting and sets the bias level according to the strength of incoming signal. Thus a constant-level signal reaches the video amplifier. For reasonable differences in station signal levels it should not be necessary to change brightness-contrast settings when switching channels. However, the tuned circuits of the various stages are influenced by the biasing of the various i.f. tubes. Input capacitance of these tubes -because of the influence of Miller ef-fect-varies with stage gain, which in turn is a function of biasing and a.g.c. As the receiver is switched from station to station, bias levels change according to signal strength. This changes resonant frequencies of tuned circuits (shift in input capacitance) and i.f. amplifier response becomes a function of received signal strengths.

Miller effect

Miller effect in an i.f. stage causes a change in input capacitance whenever the operating bias and gain of that rtage is changed. As bias is decreased and stage gain increases, input capacitance of the tube also increases. Thus the resonant frequency of the tuned circuit with which this capacitance is associated also decreases. (Fig. 5-a). Resonant frequency increases with an increase in stage bias.

An opposite frequency-bias relation can be set up by using an unbypassed cathode. In such an arrangement effective input capacitance decreases with a decrease in bias and increases with more bias. For example, if bias is in-
creased, gain of stage falls and there is a weaker signal across the cathorde resistor. Under this condition. the ratio of signals e_{R} to e_{k} is increased and the input capacitance has influence over a greater percentage of the total applied signal e_{i}. (the sum of e_{g} and e_{h} must always equal applied signal votage). This means effective input capacitance has increased. See Fig. 5-b.

Since our original bias has been increased, the higher input capacitance causes a decrease in the resonant frequency of tuned circuit-an opposite effect to Miller effect. With a bias decrease a greater percentage of the applied signal appears across R_{k} and input capacitance becomes less influential. Resonant frequency will then increase.

It is reasonable to expect that if we choose a proper value of R_{k} and insert a modifying capacitor from grid to cathode, as in Fig. 5-c (reduced capacitance change due to Miller effect) two opposite influences could be repressed and the resonant frequency changed very little with a shift in bias.

We can carry this idea a step further and expect that, with proper control of R_{k} and C_{k}, frequency could be marle to shift in either way with bias change.

Philco controlled i.f. system

Philco has employed these vacuumtube input relations to improve their i.f. system (Radio-Electronics, Sept. 1950, page 74). It is a fact that in normal signal areas a good picture and good sound occur at the same setting of the fine tuning control with a properly aligned receiver. However, in a weak signal area and with a properly aligned receiver, best picture and best sound do not occur at the same setting. This is because the signal is weak and the picture carrier sets down $40-50 \%$ on the response curve. If fine tuning is varied until the picture carrier is up on the
fiat-top of the response curve, picture synchronization is improved and the picture has better contrast. At this setting', however, sound is lost because the sound carrier frequency has been raised above the frecquency of the sound i.f. or, in the case of intercarrier, is off the response curve entirely.

In the Philco compensated i.f. amplifier a special resonant shift is incorporated (Fig. 6) to raise the level of the picture carrier when a weak signal is: received while leaving it at normal anmplitude level for strong signals. This is done automatically without any shift whatsoever in the basic i.f. carrier frequencies, and therefore, no loss of sound when the receiver is tuned for the best picture on a weak signal.

A modifying capacitor is used to obtain a controlled amount of frequency shift due to Miller effect. In addition. an unbypassed cathode resistor of the proper value to dominate the Miller effect change by a definite amount is used. Thus when bias along the a.g.c. line decreases upon reception of a weak signal, cathode circuit action causes input capacitance to decrease and raises the tuned-circuit resonant frequency to a value higher than 25.5 mc . This boosts the amplitude level of the picture i.f. carrier frequency of 26.6 mc . In fact the relative amplitude level of picture carrier when a weak signal is received is roughly double that on a weak signal.

In the same i.f. unit Miller effect is accentuated by grounding the cathode of a few of the i.f. amplifier tubes. In these cases it was found helpful to decrease the resonant frequences of some of the higher-frequency tuned circuits to raise picture and sound carrier levels when weak signals are received, dropping the 27.-me tuned circuit lower to raise picture carrier level and dropping the $23-\mathrm{mc}$ lower to improve sound carricr level at $2: .1 \mathrm{mc}$.

Fig. 3-Above, the three chiof types of compling in television i.f. amplifiers.

Fig. 4 -Open-wire or coasial links are used to couple mixer and i.f. stages.

Fig. 5-How Miller eftect is controlled. Fig. 6-This i.f. chases the signal.

MANY small set owners cannot afford the larger receivers. This means there is a ready market for the competent technician who can install a larger precure tube and make the necessary circuit changes for good performance. In fact, many aler't service organizations are already busy with this profitable venture. The cost, compared with the price of a new set, is low enough to attract customers, yet affords a good margin of wrofit for the technician.

Three factors must be considered for any conversion: the cabinet size, the tube type, the necessary circuit changes. The size of the present cabinet and of the desired screen are very important, for any circuit can be modified to accommodate tubes from the 12 - to 19 inch or larger size. If the existing cabinet must be used, then the tube size will be limited to the next larger one unless the cabinet is exceptionally roomy. If, however, the customer is willing to pay for a larger cabinet, tube size is no problem.

Of course some receivers have a very crowded cabinet which would not accommodate any larger tube. In such cases a new cabinet or installing the larger tube in a separate cabinet are the only alternatives. A separate cab-

[^3]inet for the tube alone is not recommended because it leaves a dead screen on the original receiver and requires interconnecting cables. A new cabinet is preferable-one that will hold both the old chassis and the new tube.

Cabinet changes

The technician must estimate the maximum usable tube size. The front dimensions of the cabinet will generally set the limit. Most 10 -inch tubes have a face diameter of $101 / 2$ inches and a length of about $171 / 2$ inches. Some of the

Fig. 1-Using a large deflection angle reduces the length of the picture tube.
old cabinets will take 12 -inch tubes easily, for the difference in width is only a couple of inches and some types (such as the 12 KP 4 and the 12 QP 4) have the same length as the 10 -inch types.

The 14 -inch rectangular tubes can also be used, because they are actually about an inch shorter than the 10 -inch types. They are shorter because they have a greater deflection angle. If the beam is swept over a wider angle, the tube can be made much shorter for a given screen size. This is shown in Fig. 1, which compares the 16AP4 and the $16 S P 4$.

Both tubes have a face diameter of $157 / 8$ inches, but the 16 AP 4 , which has a deflection angle of 53 degrees, has an overall length of $22 \frac{1}{4}$ inches. The 16 SP 4 , however, is only $171 / 4$ inches long because the larger deflection angle (70 degrees) allows shorter construction. (Fig. 1 is for comparison only, since deflection starts at the gun and not the tube base.) Thus, the 16SP4 is actually shorter in over-all length than most of the 10 -inch types!

If the new tube is longer than the original tube, it may protrude through the back of the cabinet if the extended par't is protected by a metal shield. Make this shield from heavy gauge tin or sheet metal. Cut a hole in the back

Fig. 2-Basing diagrams for kinescopes RADIO.ELECTRONICS for
panel of the cabinet to fit the neck of the tube, and bolt the shield on to prevent tube damage as shown in Photo A. This is a sensible procedure, for it is a waste of space to use a deeper cabinet merely for the tube neck alone. Several commercial receivers use this arrangement to decrease cabinet size.
The front of the cabinet will have to be cut out more to provide sufficient opening for the tube face. Some of the older receivers have a removable mask and this simplifies the procedure. With others, a larger opening must be cut and a new mask fitted over it. Panel masks to accommodate all tube sizes (both rounded edge and rectangular) are available from wholesale houses at low cost.
Since the larger tube will set the neck higher above the chassis, a new yoke and focus coil assembly bracket must be installed in place of the small one. These are also available from various wholesale houses, and come in several heights for the type tube used. An assembly bracket for a 16 -inch picture tube is shown in Photo B.

The tube type

Tubes with deflection angles up to 65 degrees can usually be interchanged without changing the deflection yoke. If the new tube has a greater deflection angle and it is to replace one having a smaller deflection angle, a wide-angle deflection yoke must be used. This is important to consider for it means that some tubes not only require circuit changes, but parts replacement as well.

All 10- and 12 -inch picture tubes have deflection angles of 50 to 56 degrees and can be replaced with larger tubes without yoke change if the larger tubes do not have deflection angles in excess of 65 degrees. Table I lists a representative group of these tubes. This list does not contain any rectangular types, for these all have a 70 -degree deflection angle.
Table II lists tubes with deflection angles greater than 65-degrees and this includes the 19 - and the 22 -inch rectangular types. All tubes (both Tables I and II) have socket connections as shown in Fig. 2-c except the 10DP4, the 10 MP 4 , and the 12 VP 4 which are shown in Fig. 2-a and 2-b. The 10DP4 uses electrostatic focus.
The new tube should have the same type ion trap magnet (beam bender) as the old tube, particularly if the coil type is used. Replacing the double field coil type with a tube requiring a single magnet means the old beam bender must be fastened to the chassis and a singlemagnet type purchased for the new tube.
Another consideration is the outer concluctive coating which, with the inner graphite coating and the glass dielectric, acts as the second filter capacitor of the high-voltage system. If the new tube has no outer conductive coating, a $500-\mu \mu \mathrm{f}$ high-voltage filter capacitor must be wired into the high-voltage power supply circuit to avoid ripple.
With some tube types being scarce,
however, it may be necessary to use one requiring the beam-bender change and capacitor addition. While these units are not costly, they do involve a little more time for the conversion process.

Tubes with gray filter face plates reduce ambient light reflections. This may be an added selling feature, but is not of prime importance in tube conversion. If all other factors fall into convenient replacement and availability, the gray filter face plate is of secondary importance.

Circuit changes

As a rule, 10,000 volts will operate 12 -inch tubes; 12,000 volts is enough for 16 -inch tubes; and 14,000 volts is adequate for the 19 -inch tubes. Since most 10 -inch receivers have high-voltage supplies which furnish about 9,000 volts, few changes are necessary when these are replaced with 12 -inch tubes.

Often a 9,000 - or 10,000 -volt supply can be boosted by slight circuit changes to operate 16 -inch tubes such as the 16 AP 4 or the 16 CP 4 which have low deflection angles. A number of such changes are possible with the kick-backtype high-voltage system as shown in

Fig. 3 without having to replace the horizontal output transformer.
Measure the potential with a highrange v.t.v.m. (or one with a high-voltage probe) to determine what voltage is

Fig. 3-The kickback type of high-voltage supply used on older 10 -inch sets.
available. If it is only about 7,000 volts, a voltage-boost doubler system will be necessary. If 9,000 volts or more are available, two or three thousand more can usually be secured by the proce-

Table 1-Small-Angle Tubes					
Type	Length (Inches)	Face Diameter (Inches)	$\begin{gathered} \text { Deff. } \\ \text { Angle } \\ \text { (Degrees) } \end{gathered}$	Envelope	Type Beam Bender
	$183 / 4$ $17 / 1$ $183 / 2$ $188 / 8$ 18		$\begin{aligned} & 54 \\ & 55 \\ & 54 \\ & 54 \\ & 55 \end{aligned}$	Glass Glassi Class Matal Metal1 Glass	Double
$15 C P 4$ 15084	211/2	151/2	57 57	Glass 1 Glass 1	Double
16 P4 4	221/4	15/8	53	Metal 1	Double
(16CP4 ${ }_{1604}^{1684}$	211/2	15\%/8	52 60	Glass ${ }_{\text {class }}$	Double
16EP4	199\%/8	15\%/	60	Metal	Double
${ }^{165 P 4}$	201/4	16\%\%	62 60	Class1	Single
	21/4	15/8	60	Glass	Double
	221/4	$15 / 8$ $16 / 8$	52 60	Glass	Double Double
1 Require second high-voltage filter capacitor. Glass types have no outer conductive coating.					

Table II-Large-Angle Tubes					
Type	Length (Inches)	Face Size (Inches)	Deff. Angle (Degrees)	Envelope	Type Beam Bender
$\begin{aligned} & 14 \mathrm{BP41} \\ & 14 \mathrm{CP41} \\ & \text { 14DP41 } \\ & 14 \mathrm{FP41} \end{aligned}$	$\begin{aligned} & 16-13 / 16 \\ & 163 / 2 \\ & 16 / 4 \\ & 16 / 8 \end{aligned}$		$\begin{aligned} & 70 \\ & 70 \\ & 70 \\ & 70 \end{aligned}$	Glass Glasss Glass: Glass Glas	Double Single Single
${ }^{16 G P 4}$	17-11/16		70	Metal2	Single
$16 \mathrm{CP44}$ $16 \mathrm{OP41}$		$111 / 2 \times 143 / 4$ $11 / 2 \times 143 / 4$	70	$\xrightarrow[\text { Glass }]{\text { Glass }}$	Single
${ }^{168 P 441}$	$183 / 4$	11/1/2 $\times 144^{3 / 4}$	70	Gass	Double
16594 $16 T P 41$	17-5/16	153/8 $11 / 2 \times 143$	70 70	Glass	Double
	18/8/8	111/2 $\times 144^{1 / 4}$	70	Glass ${ }^{\text {a }}$	Single
$166 P 4$ $16 W P 4$	${ }^{177.3 / 16}$	157/8	70	Glass ${ }_{\text {cose }}$	Single Double
${ }^{16 \times P 4}$	183/4	111/2 $\times 143 / 4$	70	Gass:	Double
16 YP4	17-5/16	15/8	70	Glass	
177841 $1778 P 41$ $77 C P 41$	$185 / 4$ 199 19	$\begin{aligned} & 121 / 4 \times 153 / 8 \\ & 15-21 / 64 \times 12.9 / 64 \end{aligned}$ $10-1 / 16 \times 12^{3 / 1}$	$\begin{aligned} & 70 \\ & 70 \\ & 70 \end{aligned}$	Glass2 Metal?	Single Single Single
$19 A P 4$	$211 / 2$	185/8	66	Metal:	Single
19084 $19 E P 41$	21/21/8	${ }_{178}^{18 / 9} \times 13-3 / 32$	${ }_{70} 6$	Class	Dauble
19 FP 4	22	187/3.38	66	Glass:	Doubie
$19 \mathrm{GP4}$	$211 / 4$	183/8	66	Glass-	Single
208P4	283/4	20	54	Glass?	None
22AP4	227/8	21-11/16	70	Metal	Single

[^4]dures detailed in the following paragraphs. Try a new 6BG6-G and a new 1B3-GT tube, because low emission from either type in an old set could drop the high voltage below normal.

One method which gives increased sweep and voltage is to place a capacitor across the secondary of the horizontal output transformer. Try values from .01 to $.035 \mu \mathrm{f}$, for some values work better than others in different circuits. Put the capacitor across points marked 1 and 2 in Fig. 3, or across 2 and 3. The width coil can be removed entirely, and the tap at 2 removed and placed at point

Fig. 4-A high-voltage doubler circuit. This supply delivers as much as 13 kv .
3. Try a capacitor of about .035 uf between these new points (1 and 3). This often increases sweep over 1 inch and raises the voltage more than a thousand. There is usually sufficient latitude in vertical and horizontal sweep (height and width controls) to blow the picture out to proper size for the 12 - or 15 -inch tubes (and occasionally for the 16 -inch also).

A smaller value of screen dropping resistor in the 6BG6-G horizontal output tube will give additional sweep and high voltage. However, if the regulation of the low-voltage supply is poor, the added screen current may drop the plate voltage and actually drop the output. Experiment with different values for the screen resistor to get the desired
amount of increase in the high voltage.
Returning the negrative side of the $500-\mu \mu \mathrm{f}$ high-voltage filter capacitor to terminal 1 of the horizontal output transformer in Fig. 3 instead of to ground will increase the high voltage a little, too. Another way to increase both sweep and high voltage is to return the plate of the horizortal discharge $0:$ oscillator tube to the boosted B-plus (X in Fig. 3) through a decoupling and dropping R-C circuit. Returning the plate of the vertical output tube to this point will increase the vertical drive if more is needed. Decreasing the value of the plate resistor of the horizontal discharge tube will also help.

The 6BG6-G can be replaced with a type 6 CD6-G for more sweep and higher voltage. These tubes are interchangeable as far as socket connections and operating voltages are concerned. However, the 6CD6-G takes a $2.5-\mathrm{amp}$ filament current compared to 0.9 amp for the 6BG6-G. When making the change, be sure the power transformer can take the added drain, or else install an additional heater transformer.

If the original high-voltage system delivers only 7,000 volts, it must be rebuilt. Fig. 4 shows a voltage doubler circuit with a horizontal output transformer having two filament windings for the rectifier tubes. This system does not actually deliver double the original voltage, but a lesser amount depending on the load. With 7,000 volts initially, however, 12,000 or 13,000 volts will be available for tubes as large as the $19-$ inch variety. With good emission 1B3GT tubes, and a 6CD6-G horizontal output tube, the high voltage will be enough for the 19 -inch tubes.

For 16 -inch tubes, which need only 12,000 volts for high brilliancy, the voltage of the doubler can be reduced by using $250-\mu \mu \mathrm{f}$ capacitors in place of the $500-\mu \mu \mathrm{f}$ units. This will decrease the regulation somewhat and drop the potential. A bleeder consisting of ten 10 -megohm resistors in series can also be placed across the high-voltage

Fig. 5-High-voltage circuit for tubes with large-angle deflection and using up to 14 kv . This supply uses as specially-designed ferrite core transformer.
output for a slight reduction if the voltage is a little too high for the 16 -inch tubes. Using ten resistors assures smaller voltages across the individual units, with less danger of flashover.
Another way to increase the high voltag'e as well as the horizontal sweep is to use a combination horizontal de-flection-output and high-voltage transformer, such as the RCA 223 T 1 , in the circuit shown in Fig. 5. Autotransformer action supplies high voltage to the rectifier tube, and the transformer has a separate winding for the rectifier filament.

This circuit, when used with deflecting yokes such as the RCA 209D1, provides ample deflection for 70-degree tubes and it has a high-voltage output of about 14,000 .
Excessive high voltage will prevent full deflection and will result in a smaller picture. It also increases the electron beam velocity and the deflection coils cannot sweep the beam fully. For this reason it is important that the high voltage be measured to make sure it does not exceed the nominal value for the tube used.
Some kits on the market furnish complete hardware and other components necessary for conversion. A complete doubler kit runs less than $\$ 15$ and many dealers stock these for conversion from 10 - to 16 -inch tubes. When converting from 10 to 12 inches, however, the yoke and horizontal output transformer need not be changed, and only a few minor alterations are necessary to get satisfactory results.
Wide-angle 70-degree deflection yokes and other components such as larger horizontal output transformers are sold separately and come in a variety of makes and prices. A knowledge of the parts available on the market coupled with conversion know-how is a sure avenue to greater profits for the technician.

Ion trap and focus coil

When installing some types of tubes, it may be necessary to make changes in the focus circuit to provide more or less current through the focus coil. If more current is required, install a bleeder resistor between the low-voltage side of the coil and ground. Adjust the resistance of the bleeder so the sum of the focus and bleeder currents equals the focusing current required for the new tube. When the tube requires less current, a suitable resistor should be connected in parallel with the coil. The resistor is adjusted so the excess current flows through it instead of through the coil.

Adjust the ion trap or beam bender as soon as the new tube is installed. Turn down the brightness so the picture is barely visible. Move the trap back and forth while rotating it slightly from side to side. Position it for the brightest raster. Turn up the brightness to average and adjust the focus coil for sharpest lines. Touch-up the position of the ion trap for brightest raster.

TV Progress Abroad

By E. AISBERG*

OLi) Europe's 10 millions of square kilometers are divided among more than two dozen countries, inhabited by a total of 500 million people. Vith an area only 20% smaller, the United States forms a single country of 150 million inhabitants.

Here lies the fundamental difference between the development of television on the two sides of the Atlantic. In the Uiited States, a single standard has been adopted over the whole vast territory. We have seen the magnificent advance of television which has resulted from the possibility of producing great numbers of television receivers at a moderate price.

The situation is far different in Europe. There are four principal standards, without counting variations. Television, from a prartical point of view, exists only in tro countries, France and Great Britain, which already had television service before World War II.

Great Britain maintains its standard of 405 lines. Its programs are transmitted from Alexanclra Palace at London and from the newly inaugurated Sutton Coldfield station near Birmingham, which is connected with London by radio relays. A third transmitter is being erected at Holme Mass (near. Huddersfield) and will probably be completed by the middle of 1951 . The number of television receivers is now greater than 400,000 , and they cannot be manufactured fast enough to satisfy the increasing public demand. The success of English television is due to the excellent quality of the programs and relatively low cost of receivers.

In France, after the liberation, television transmissions were resumed from Paris, using 455 lines. Later, after numerous discussions, the definite standard of 819 lines was adopted, Owners of television receivers were reassured by a law guaranteeing 455line transmissions till 1958. Meanwhile, high-definition 819 -line transmissions have commenced from Paris as well as from the new transmitter at Lille, which is linked to Paris by radio relays working on 30 -centimeter waves. Anothef transmitter is being assembled at Lyons.

The number of teleriewers increases very slowly in France, chiefly hecause of the high price of receivers-a price which puts them out of reach of the medium-income portion of the population. In addition, the programs are not always interesting. They are composed largely of film-too often old and of mediocre quality.

The total budget devoted to television

[^5]in France is very small. The technicians and actors are performing veritable prodigies and making real sacrifices to assure regular and more or less satisfactory television service. Remember that in France (as in England) no advertising is permitted on television or radio, and its resources come entirely from taxes.

It is difficult to estimate the number of French television viewers exactly. A large number of them prefer not to declare their equipment officially, thus avoiding the tax of 2,500 franes per annum. The closest guess is about 20,000 viewers.

There are as yet no regular television programs in European countries other than England and France (and possibly Russia). These countries had been marking time pending the adoption of a European standard. Studies to that end have been made by a commission of the Consultative Committee of Radiocommunications and comprising 60 delegates representing 15 countries. At the final meeting held in London May 8, 1950, the following stage had been reached:
"Systems based on $405,525,625$, and 819 lines were examined. The delegates of France, the United Kingdom, and the United States have confirmed that their countries will continue to use their present standards.
"France and the United Kingdom maintain their previous proposition envisaging the unification of the standards used by the Paris and London transmitters.
"Austria, Belgium, Denmark, Italy, the Netherlands, Sweden and Switzerland have declared themselves in favor of the 625-line system and have addressed an appeal to their colleagues inviting them to reconsider their position."

Why does 625 lines appear to be the future European television standard? It is, to all intents and purposes, the same as the Anerican standard. In Europe, all the electric power systems operate at 50 cycles. To avoid interference from the 50-cycle hum, all European television systems use 25 images per second, each composed of two interlaced fields.

Thus, the number of lines traced per scond in the European standard is:
$625 \times 25=15,625$ lines per second.
The U. S. standard, with 525 lines 30 times per second, is:
$525 \times 30=15,750$ lines per second.
We sce that the two standards are practically identical. With the same bandpass the European system will have a little better vertical and the same horizontal definition as the American.

View of the 819 -line transmitter tower.

Now that the new Eiuropean standard's close at hand, several countries are thinking of installing television transmitters. In the forefront are Belgium, Switzerland, and Italy. The situation in Belgium is especially peculiar. In that bilingual country every problem takes on a political aspect. The normally technical question of standards has aroused partisan passions; the Walloons favor the French standard of 819 lines, while the Flemings defend resolutely that of 625 !

It is probable that the first European 625-line transmitter will be installed in the Grand Duchy of Luxembourg. Because of its privileged geographical situation, Luxembourg is a sort of European radio center.

Like the transmitters of Monaco and Andorla, two tiny principalities on the frontiers of France, Radio Luxembourg is a private station supported by advertising. Now it is proposed to add to Radio Luxembourg a 625 -line television transmitter, with an antenna supported by towers 300 meters high, which will radiate 50 kw of power.

What will be the range of such a transmitter? Only the future can tell. Meanwhile, it appears-as the result of an inquiry we have conducted in several European countries-that the range of television transmitters often exceeds the theoretical range determined by the height of the transmitting and receiving antennas. Instances where the range reaches 150 or even 300 kilometers are not rare. Numerous Belgians receive the programs from Paris as well as those from London.

One cannot count on such exceptional ranges under normal conditions of wave propagation. But, before all Europe is served by a tight network of television transmitters, no doubt plenty of water will have flowed beneath the hridges of the Seine!

FIRST of all we want to wish all our readers a very Happy and Prosperous New Year. We are greatly flattered by the numerous inquiries regarding our book Television Servicing, as well as by the increasing stream of letters to this column. All letters are answered directly and those of general interest are answered on this page as well.

Because of the steel shortage many TV manufacturers are turning away from power transformers to use a circuit with two selenium rectifiers in a voltage-doubler arrangement. While this circuit has been used for several year's in less expensive, small-screen receivers, it is now in use for 16 - and 17 -inch rectangular picture tubes. Operating the horizontal flyback circuit from such a source means that only 250 volts B-plus are available where previously 360 to 400 volts were used. Special flyback transformers, invariably the ceramic-core type, are used to provide sufficient high voltage and deflection.

Fig. 1-Voltage doubler cricuit of the type used in transformerless receivers.

The circuit in Fig. 1 shows a typical selenium doubler circuit. The output at the filter is 250 volts with 117 volts a.c. input. If the line voltage is low, the output may drop to 230 or even 210 . The low line voltage will cause a reduction in width and high voltage, or brightness. Unfortunately many homes suffer from low line voltage in the evening hours when the load on the power generators is greatest. In some locations a.c. line voltage as low as 95 . While most transformer types of receiver have some leeway, the majority of selenium-type TV sets will not perform properly at such low values.

One solution is to install a constantvoltage type of transformer or a suitable variable transformer and run the receiver from that source. The cost of
either runs from above $\$ 20$ to $\$ 50$ and many set owners object to this additional expense. But if you have any old power transformers around, a simple and effective arrangement can be made. Any power transformer having a 117 volt primary and a 6.3 -, 5 - or 12 -volt filament winding can be used.

Connect the a.c. power line to the 117 -volt primary winding as shown in Fig. 2. Now make a temporary connection of the filament winding and measure the voltage across 1 and 3. If it is less than the voltage across 1 and 2, reverse the filament winding. Where a 6.3 - and a 5 -volt winding are used, connect them in series, checking to make sure their voltages add. Mount this auxiliary transformer in the TV cabinet away from the picture tube, possibly in some corner or in the bottom section of a console. Solder all leads and tape them securely before mounting the transformer.
If low line voltage occurs only at certain times of the day, a simple toggle switch can be mounted on the back of the cabinet as shown in Fig. 2. When the picture gets small and dim, the owner throws the switch to connect his set to the higher tap on this autotransformer. The switch must be returned to the normal position when the set is turned off or when the line voltage goes up.
Almost any transformer can be used, but the windings not used should be disconnected and their leads securely taped. Since the secondaries are not drawing rated current, the primary current can be higher than in other applications and any transformer designed for several amperes of filament current and about $100-\mathrm{ma}$ secondary current will be suitable as an autotransformer.

Negative picture

Turning the brightness control up on a Bradford (Du Mont) TV set produces a negative picture. Also, I use a lazy-X-type antenna and would like to know
if a Yagi uill give me more gain on chamel 6.-J. F. S., Marion, Ohio.

Replace the 1B3-GT in the highvoltage supply. Check the high voltage,

Fig. 2-Simple hookup for stepping up line voltage with a power transformer. which should be 12 kv with an average picture. Replace the picture i.f. amplifiers and the r.f. amplifier. It is also possible that the 19AP4 tube has become weak. Before replacing it, try readjusting the ion trap or using a new ion trap.

Any Yagi, if tuned for a single channel, will give more signal on that channel than a dipole and reflector (lazy X). Orienting the Yagi is rather critical since it has a narrow beam in one direction only.

Unsteady picture

The picture on a 630 TS receiver is unsteady and shifts to the silles and goes out of sync completely. I have tried adjusting the synchrolock, but with no success.-J. G., Philadelphia Pa.

I suggest you replace the 6AL5 and the 6 K 6 horizontal oscillator tubes in the high-voltage cage, or the 6 AC . Any of these would cause your trouble. The synchrolock adjustment may fail if the capacitors shunting either winding are defective.

No vertical sweep

Except for a bright horizontal line, the screen of an Admiral 16-inch $16 R 12$ receiver is blank.-C. P., Jr., Auburn, Me.

The defect must be in the vertical sweep section, as there is no vertical deflection at all. A defective tube or capacitor is the most likely cause, al
though a defect in the vertical deflection coil in the yoke or in the leads running to the yoke will also cause this trouble. Replace the vertical output and oscillator tubes, and measure plate voltages and check the continuity of the windings of the vertical output transformer.

Big-Tube Conversions

We receive numerous queries on converting small-tube television receivers to use bigger tubes. Since each set has its peculiarities, a general answer covering a large number of madels is usually insufficient. We have therefore prepared a number of brochures, each describing in detail the conversion of one of the more common models. Send us the name and model number of the set to be converted, plus a stamped, self-addressed envelope, for the brochure desired. If we have none for your particular job, an individual reply will be sent. Address:

> Walter H. Buchsbaum Television Clinic
> RADIO-ELECTRONICS
> 25 West Broadway New York 7, N. Y.

Weak reception

I get very weak reception on the low band. The set is a 19-inch Du Mont and the antenna is an Amphenol 114-026. The lower half of the dipole is cut away because the antenna is for 300-ohm ribbon line and the set has a 72-ohm input.-W. B., Brooklyn, N. Y.

A folded dipole is intended for a $300-$ ohm line and your set is designed for 72 -ohm input. You should use a single dipole.

Poor reception on the low band may be due to location, orientation, or height of the antenna. Misalignment of the Du Mont tuner, especially poor tracking on the low band, will cause weak pictures. Alignment may be done according to the manufacturer's instructions with an oscilloscope and a sweep generator.

The r.f. bandwidth of this set should be 6 mc and the picture i.f. bandwidth 3.8 to 4 mc .

No brightness

The brightness control on an Admiral 10-inch receiver gives me difficulty.F. S. B., Jr., Chicago, Ill.

Insufficient brightness may be caused by:

1. Low high voltage. Replace the 1B3-GT, check the 1 -megohm resistor on the 1B3-GT socket, replace the highvoltage capacitor.
2. Brightness control shorted. Disconnect the capacitor from the control arm to ground to check. A misadjusted ion trap will also cause lack of brightness.
3. Weak picture tube. Although this is the least pleasant trouble, this is what I suspect. 10BP4's usually get weak after about 18 months of service. If all the above tests fail, I suggest you replace the 10 PB 4 as the next step in checking the receiver.

Simple Master Antennas

By WILBUR J. HANTZ

Many problems arise in large apartment houses where each TV receiver requires a separate antenna. Two of the more prominent problems are reluctant landlords and inadequate roof space. The landlord who will allow a number of stacked arrays on the roof is still rare. However most landlords can be persuaded to permit the installation of at least one master antenna system.

An efficient master antenna system is a challenging problem. Some of its most important requirements are:

1. A constant impedance match to the receivers;
2. Adequate isolation between receivers to prevent interaction and oscillator radiation;
3. Prevention of reflections and standing waves;
4. Not too much signal attenuation. If the signal strength is high in the immediate area, all these conditions can be met by using a simple resistive network between the receivers and the antenna as shown in Fig. 1. Some dealers use this system for their TV showroom. The input impedance of most receivers being 300 ohms, the resistor values are so chosen that a constant impedance of 300 ohms is always

Fig. 1-Hookup for strong-signal areas.
presented even though some of the receivers are turned off. If the five receivers of the figures were connected directly to the transmission line minus the matching resistors, the total impedance presented to the line would be $1 / 5$ of 300 ohms or 60 ohms, which would cause all kind of headaches. In Fig. 1, d.p.d.t. toggle switches are used to switch in either the receiver or a dummy load. Each branch presents a constant impedance of 1500 ohms to the antenna.

The resistive pad inserts quite a loss and cannot be used where the signal
strength is too low. Here, the proper approach to the problem is to use a booster amplifier between the network and the antenna. Commercial boosters generally provide outputs of either 75 or 300 ohms which will match most TV receivers. In Fig. 2, the matching sys-

Fig. 2-A more sensitive system. Two boosters or a special booster permits matching both 75 - and $300-0 h m$ lines.
tem provides either 75 or 300 ohm outputs. Carbon resistors of the $1 / 4$-watt variety are used. In this installation, shielded line should be used both from the antenna to the booster and the receivers. The matching network can be located at the booster if desired.

If other impedance values are needed than indicated, it is just a matter of using Ohm's law for parallel impedances because most TV receiver inputs can be considered as resistive.

FILTERS AID TV FILMING

Improved picture quality from televised motion picture films has been made possible by a new filter technique developed at the Eastman Kodak Company. The filters prevent the red and infra-red radiation of the projection beam from falling on the iconoscope mosaic.

One filter recommended by the Eastman company consists of a 6 mm layer of Pittsburgh heat-absorbing glass No. 2043 plus a 3 mm layer of Corning No. 9780 or 9788 . This combination reduces light with wavelengths greater than 590 millimicrons to less than 10% on the iconsoscope mosaic.

The improvements in the reproduced TV pictures are: reduced overall haze or veil; better contrast and resolution and increased brightness or tone range; reduced edge flare; reduced high light saturation; and increased video signal. When the filters are used, the light on the mosaic is reduced by 30%, but the master monitor shows a 20% increase in video signal.

1	Sa！a0ss333Y	운운운은	$\ddot{Z}_{a} \ddot{Z}_{n}$	을을은을을	운은은을		\ldots	2	윤율	운운울을	
19	say3u！ azis 」ayeads	wis in ${ }^{\text {a }}$		－ 0	Nosing			13	악	से	
H	uo！zsols！p \％ s7zem qndino $\exists \forall$				NNNN	\pm	+		$\begin{aligned} & \mathrm{F} \\ & \mathrm{~N} \end{aligned}$		nis unin in m
	eunapue แ！－7！！ng	$\begin{aligned} & \text { FFに } \\ & \text { RZ } \end{aligned}$	に上下た下	PFPPEP	位にたE			$\frac{k}{z}$	$\frac{1}{2}$	トケットに	응ㅇㅇㅇㅇㅇㅇㅇㅇㅇ응 2Z2Z2zzzzz
จ	รəృフКэะદిวน ＂f＂00p！\wedge	NNNN ヘกำกํ	 NNN		$\begin{aligned} & \text { NHNN } \\ & \text { NNMN } \end{aligned}$				$\begin{aligned} & 19 N \\ & 1812 \end{aligned}$	NNNeN NMNMN	
7	sogets iti oapla	mmmm	mmmmm		mmmm	m	m	m	mm	mmm＋m	
\％	25Y 10 2dK1	문문믄출	성뭉민 궁힌		뭉흔훈힌		문	뭉	문민	열을은	
の	punos лว！л．етлади｜	$\stackrel{\pi}{\circ} \frac{0}{2} \frac{0}{2} \frac{0}{2}$	운운운운운				$\underset{⿻}{\approx}$	$\underset{\sim}{\boldsymbol{E}}$	$\underset{\sim}{y} \underset{y}{y}$	운을은을	은은은은은은은은
∞	saqni 10 saqunn	－	NヘN\％	9¢न	거거N	$\underset{\sim}{2}$	$\stackrel{\sim}{\sim}$	걸	게	がN	Mopmoren
N	SIIOAOI！Y әроие aqni 8－0				のののデ		न	न	$\cdots \mathrm{Fr}$		
	2dKı эqn7 y－0					$\#$ 0 0 0 1	$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{0}{0} \\ & \mathbf{H} \end{aligned}$	d 0 0 1			
15	MS－WJ－WV	을을을					$\begin{aligned} & \frac{5}{4} \\ & \frac{1}{2} \\ & 4 \end{aligned}$	$\frac{0}{2}$	$\therefore \div$		
\pm	2dKı SISseys so peulqes	FトOO	00000	UOUトUU	OFFO	0	0	F	00	へひトロト	0000000000
	daqunnu sisse40										
\sim	IOPOW					18 0 - 		16M1，16T1，16T1B			RNTNNMMMMM
F	sวлnłวejnuew										

$\stackrel{\sim}{\sim}$	운운운	울안	2윤	울	0	운울	m울	운안	$2{ }^{1}$ 울			윤윤안		운운울
\cdots		กิศ	∞ in	ศิㄱ	\sim	－	－			No Ninc Nol		000	T	
$\overrightarrow{7}$	$\left\|\begin{array}{l} \text { nin } n \\ \text { in } N \end{array}\right\|$	mm	NN	ロー	\cdots	－	\cdots	Hr	H／	MMMMMMMM	लन0		NmmmNammin	（enmmen
\cdots	윤윤윤	율안	ト下三	율윤	$\stackrel{1}{2}$	222	22	と下	$\underline{2}$	zzzzzzzz				こ上にち
ๆ		$\begin{array}{\|l\|l\|} \hline r+r \\ \text { Net } \\ \text { No } \end{array}$	$\left\lvert\, \begin{aligned} & \bullet 0 \\ & \underset{\sim}{\sim} \end{aligned}\right.$	$\begin{aligned} & \text { ni } \\ & \text { ผi } \\ & \text { Nun } \end{aligned}$	$\begin{aligned} & n \\ & n \\ & n \\ & n \end{aligned}$		+			 			R以年以 	$\begin{aligned} & \text { NMロ } \\ & \text { NMN } \end{aligned}$
7	－＋	＋	mm	－	m	がす	＋＋	＋	－	もすもせmm		mmm		すせ
9	몽뭉민	둥힌	힌민	흔ㅎㄴ	흥		צ́x	๕ิ	\＄		뭉문문준준준준만	윤율		추운
σ			$\underset{\boldsymbol{y}}{\boldsymbol{y}}$	율울	$\stackrel{y}{*}$		$\underset{\gg \boldsymbol{x}}{\underset{\sim}{4}}$	$\underset{\sim}{\boldsymbol{y}} \underset{\sim}{\boldsymbol{y}}$	$\stackrel{y}{x} \left\lvert\, \frac{y}{x}\right.$	¢	윤운윤유윤윤운	율융		
∞	N్న్స్	สส	99	Ṅ	－	กิホ	N゙N	N二	N	พพกสูสคั		${ }_{\sim}^{\infty}$	ラNন二ベN（NN	กลูส
N	유국규	フึバ入	戸さ	Mন	न	min	フัก	ๆैّ						
－									\％					
in	율울	율	윤울	윤안	$\underline{2}$	윤윤	E윤	윤안	울			윤율율		운율슈를
	$\begin{aligned} & 0 \\ & y_{1} \\ & x_{1} \leqslant 0 \end{aligned}$	00	1－0	00	－	－トロ	ט	ט		ひUトトロトロ		\xı｜1	ートטUひひல	へトトロ
m	్ㅜㅇ్N్ㅣ	প্রి우융		\％09		T్ల్ల్ల్ల్ల	mom	N్ల్ల్ల						
N		$\begin{aligned} & \text { 웅후 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ön } \\ & \underset{\sim}{\circ} \\ & \hline 1 \end{aligned}$		－					en 号 NM 웅욱 －				

울울우운운운	ancono	을울을	ロロ	은은윤윤	こえこここえこの入え。	0		ソOニスス	울
			નึ		∞ N	7			${ }_{x}^{\infty}$
 	すかもすがす	NNNNN	サ寸	HनHन	HHNNNNNNNNN	앙	mmmmmmm	$\infty \times 0 \mathrm{mmm}$	$\rightarrow+$
トケトケトケト	탄출울찬	FPP?	$\frac{0}{27}$	たケたトにケト	トにトたたたたたたトに	2	PPPP? FF	そたたケた	
			$\begin{aligned} & \text { WN } \\ & \\ & \text { NN } \end{aligned}$		 	$\begin{aligned} & 19 \\ & \underset{N}{n} \end{aligned}$			$\begin{aligned} & n \times 19 \\ & N \sim N \end{aligned}$
mmmmmmm	ももせせもせも	ずすもす	ナ	mmmmmmy	NTMMmmmmmmm	18	mmmmmmm	－+mmm	mm
든둔둔문준문딘	문둔휸훈운문운		$\begin{aligned} & \text { ì } \\ & \mathbf{y} \mathbf{y} \end{aligned}$		무ㅁㅜㅜㅁㅜㅜ뭄ㅁㅁ뭄 －0000000000	응		운운문민	든망
	운운윤윤윤		$\frac{0}{2} \frac{0}{2}$	ジ ンンンヤンン〉	ンンンンンンンンンンン	$\frac{1}{2}$	운운울울운		$\underset{\sim}{\circ}$
NָNָNNN	M－N\％	¢్N్N¢్NM	N－M	ズN		¢	NNNNANN		주
FM品MMホ			ブन	नウननウनさ		N	 		F－
			$\begin{aligned} & \pm \frac{3}{2} \\ & \frac{0}{0} \\ & 0.8 \\ & \end{aligned}$		 	$\frac{\vec{a}}{k}$			
\square			$\frac{0}{2}$		それくてくくてくてそく	$\frac{0}{2}$			20
トトOUOトO	OUOトトトU	トOトOO	00	OFOUトOU	OトトトロUலUOUO	0	トトロUலUO	טロト0ロ	100
						윽	욱둑욱슥Nㅜㄱ		
						블			
				$\dot{8}$ 0 흔 둥 あ 出 					

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Jackson Industries, Inc. 500 E. 40 St. Chicago, III.	$\begin{aligned} & 14 \mathrm{~T} \\ & 16 \mathrm{C} \\ & 16 \mathrm{~T} \\ & 29 \mathrm{C} \\ & 316 \end{aligned}$	$\begin{aligned} & \mathbf{E} \\ & \mathbf{E} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & \mathbf{T} \\ & \mathbf{C} \\ & \mathbf{T} \\ & \mathbf{C} \\ & \mathbf{C} \end{aligned}$	No No No No AM	14BP4 16RP4 16RP4 19AP4A 16RP4	$\begin{aligned} & 14 \\ & 14 \\ & 14 \\ & 14 \\ & 14 \end{aligned}$	20 20 20 20 27	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{array}{\|l} \hline \text { Yes }{ }^{23} \\ \text { Yes } \\ \text { Yes } \\ \text { Yes }^{23} \\ \text { Yes }^{23} \\ \text { Yes }^{23} \end{array}$	$\begin{array}{\|l} \hline 3 \\ 3 \\ 3 \\ 3 \\ 3 \end{array}$	25.75 25.75 25.75 25.75 25.75	NT NT NT NT NT	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \end{aligned}$	$\begin{array}{\|r} \hline 6 \\ 8 \\ 6 \\ 10 \\ 10 \end{array}$	No No No No P
Kaye-Halbert Corp. 3555 Hayden Ave. Culver City, Calif.	$\begin{aligned} & \text { 233B, 233M, 233W } \\ & \text { 234B, 234M, 234W } \\ & 235,236 \\ & 2378 \\ & \text { 238B, 238M, 238W } \\ & \text { 240, 241 } \\ & 731 \end{aligned}$	242 242 242 242 242 242 242	\mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C}		$\begin{aligned} & \text { 16YP422 } \\ & 16 \text { YP4 }{ }^{19} \\ & 16 \text { YP4 } \\ & \text { 16YP4 } \\ & \text { 19AP4 } \\ & \text { 19AP4 } \\ & \text { 17BP4 } \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \end{aligned}$	24 24 24 24 24 24 24	Yes Yes Yes Yes Yes Yes Yes	Key Key Key Key Key Key Key	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$			$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{array}{\|l} \hline 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \end{array}$	$\begin{array}{\|l} \text { No } \\ \text { No } \end{array}$
Magnovox Co., The Buenter Road Ft. Wayne, Ind.	American Modern (MV64), American Traditional (MV79), French Provincial (MV67) Biltmore (MV31) Contemporary (MV78) Cosmopolitan (MV41) Embassy (MV63) Hampshire (MV7) Hepplewhite (MV36) Metropolitan (MV21) Normandy (MV37) Playhouse (MV33) Provincial (MV77), Wedgewood (MV72) Modern Theater (MV40), Shoreham (MV30)	$\begin{aligned} & 103 \\ & 102 \\ & 102 \\ & 102 \\ & 103 \\ & 102 \\ & 103 \\ & 102 \\ & 103 \\ & 102 \\ & 102 \\ & 103 \end{aligned}$	$\begin{aligned} & \mathbf{c} \\ & \mathbf{\top} \\ & \mathbf{c} \end{aligned}$	AM-FM No AM-FM No AI No No No No No AM-FM No	$\begin{aligned} & 17 B P 4 \\ & 16 T P 4 \\ & 17 B P 4{ }^{24} \\ & 17 B P 4{ }^{25} \\ & 17 B P 4 \\ & 14 B P 4 \\ & 17 B P 44 \\ & 16 T P 4 \\ & 17 B P 4 \\ & 17 B P 424 \\ & 16 T P 4 \\ & 19 A P 4 \end{aligned}$	$\begin{aligned} & 13 \\ & 12.5 \\ & 12.5 \\ & 12.5 \\ & 13 \\ & 12.5 \\ & 13 \\ & 12.5 \\ & 13 . \\ & 12.5 \\ & 12.5 \\ & 13 \end{aligned}$	$\begin{aligned} & 36 \\ & 20 \\ & 29 \\ & 20 \\ & 40 \\ & 20 \\ & 27 \\ & 20 \\ & 27 \\ & 20 \\ & 31 \\ & 27 \end{aligned}$	No Yes Yes Yes No Yes No Yes No Yes Yes No	Ord Ord	$\begin{aligned} & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 3 \\ & 4 \\ & 3 \\ & 4 \\ & 3 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 25.75 \\ & 25.75 \\ & 25.75 \\ & 25.75 \\ & 25.75 \\ & 25.75 \\ & 25.75 \\ & 25.75 \\ & 25.75 \\ & 25.75 \\ & 25.75 \\ & 25.75 \end{aligned}$	TU NT TU TU TU NT TU NT TU TU TU	13 2.4 2.5 2.4 17 2.4 4. 2.4 4. 2.4 6.5 4	15^{26} 12 12 12 $15^{2}{ }^{7}$ 8 12 8 12 12 12 12	P No P No P No PJ No PJ No P $P J$
Majestic Radio and Television Div. of Wilcox Gay Corp. 170 Washington St. Brooklyn 1, N. Y.	$\begin{aligned} & \text { 120, 121 } \\ & \text { 141, 142 } \\ & \text { 160, 162 } \\ & \text { 7P1, 7P2, 7P3, 7P10, 7P11 } \\ & \text { 7PR12, 7PR13 } \\ & \text { 9PR4, 9PR5 } \\ & \text { 9PR8, 9PR9 } \\ & \text { 902, 903, 910, } 911 \\ & 1400 \\ & 1600 \\ & 1605,1610 \\ & 1710 \end{aligned}$	99 100 101 101A 101C 103 103A 103 100 101 102 101A	\mathbf{T} \mathbf{T} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C} \mathbf{C}	No No No No AM-FM No AM-FM No No No No No	12LP4A 14DP4 16KP4 17AP4 $17 A P 4$ $19 A P 4 A$ $19 A P 4 A$ $19 A P 4 A$ $14 D P 4$ $16 K P 4$ $16 G P 4$ $17 A P 4$	$\begin{aligned} & 9.5 \\ & 9.5 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 12 \\ & \hline \end{aligned}$	$\begin{aligned} & 19 \\ & 19 \\ & 19 \\ & 19 \\ & 27 \\ & 19 \\ & 27 \\ & 19 \\ & 19 \\ & 19 \\ & 19 \\ & 19 \end{aligned}$	Yes Yes	Ord Ord	3 3 3 3 3 3 3 3 3 3 3 3 3 3	24.75 24.75 24.75 24.75 24.75 24.75 24.75 24.75 24.75 24.75 24.75 24.75	$\begin{aligned} & \text { NT } \\ & \text { NT } \\ & \text { NT } \\ & \text { TU } \\ & \text { NT } \\ & \text { TU } \\ & \text { TU } \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	5 5 5 10 10 10 10 10 10 10 10 10	No No PJ P3 P3 P3 P3 PJ No PJ PJ PJ
Marathon Radio \& Television, Inc. 495 Kent Ave. Brooklyn 11, N. Y.	Brighton, Imperial, Winslow Kent	$\begin{aligned} & 630 \\ & 630 \end{aligned}$	$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \end{aligned}$	No No	$\begin{aligned} & \mathbf{1 6 - 1 9} 9^{\prime 28} \\ & \mathbf{1 6 - 1 9} / 28 \end{aligned}$	$\begin{aligned} & \text { 12-13 } \\ & \mathbf{1 2 - 1 3} \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	No No	Key Key	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{array}{r} 25.75 \\ 25.75 \end{array}$	No No	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	No No
Mars Television, Inc. 112-33 Colonial Ave. Corona, L. 1., N. Y.	Dartmouth Hampton, Oriental, Regent; Versailles, Warwick	$\begin{aligned} & 630 \\ & 630 \end{aligned}$	$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \end{aligned}$	$\begin{aligned} & \text { AM-FM } \\ & \text { No } \end{aligned}$	$\begin{aligned} & \text { 19AP4A } \\ & \text { 16DP4A } \end{aligned}$	$\begin{aligned} & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 45 \\ & 31 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	Key Key	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & 22.3 \\ & 22.3 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{array}{r} 10 \\ 4 \end{array}$	$\begin{aligned} & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & \text { P3 } \\ & \text { No } \end{aligned}$
Mattison Television and Radio Corp. 893 Broadway New York 3, N. Y.	Aristocrat, Carolyn, Quadrille Cathay, Continental, Diplomat Challenger	$\begin{aligned} & 630-4^{29} \\ & 630-4^{29} \\ & 630-429 \end{aligned}$	$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{C} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { No } \\ \text { No } \\ \text { No } \end{array}$	$\begin{aligned} & \text { 20DP4A } \\ & \text { 17XP4A } \\ & \text { 16DP4A } \end{aligned}$	$\begin{aligned} & 16 \\ & 15 \\ & 14.5 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \\ & 30 \end{aligned}$	$\begin{array}{\|l} \hline \text { No } \\ \text { No } \\ \text { No } \end{array}$	Key Key Key	4 4 4	$\begin{aligned} & 25.7 \\ & 25.7 \\ & 25.7 \end{aligned}$	$\begin{aligned} & \text { NT } \\ & \text { NT } \\ & \text { NT } \end{aligned}$	5 5 4	12 12 12	No No No
John Meck Industries, Inc. 4541 N. Ravenswood Chicago 40, III.	MM-614C MM-614T MM-616C MM-616T MM-919C XSB	$\begin{aligned} & 9018 \\ & 9018 \\ & 9018 \\ & 9018 \\ & 9018 \\ & 9018 \end{aligned}$	$\begin{gathered} \hline \mathbf{C} \\ 1 \mathbf{T} \\ \mathbf{C} \\ \mathbf{T} \\ \mathbf{C} \\ \mathbf{C} \end{gathered}$	$\begin{array}{\|l} \hline \text { No } \\ \text { No } \end{array}$	$\begin{aligned} & \text { 14CP4 } \\ & \text { 14CP4 } \\ & \text { 16TP4 } \\ & \text { 16DP4 } \\ & \text { 19FP4 } \\ & \text { 16DP4 } \end{aligned}$	$\begin{aligned} & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \\ & 13 \end{aligned}$	18 18 18 18 20 19	Yes Yes Yes Yes Yes Yes	Ord Ord Ord Ord Ord Ord	$\begin{aligned} & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & 25.6 \\ & 25.6 \\ & 25.6 \\ & 25.6 \\ & 25.6 \\ & 25.6 \end{aligned}$	$\begin{aligned} & \text { NT } \\ & \text { NT } \end{aligned}$	2.5 2.5 2.5 2.5 2.5 2.5	$\begin{array}{r} 8 \\ 8 \\ 10 \\ 8 \\ 10 \\ 10 \end{array}$	$\begin{array}{\|l} \hline \text { No } \\ \hline \end{array}$

Radio and Television Inc. 244 Madison Ave. New York, N. Y.	$\begin{aligned} & \text { 616 } \\ & 1116,6161 \end{aligned}$		$\begin{aligned} & \mathbf{r} \\ & \mathbf{C} \end{aligned}$	$\begin{array}{\|l\|l\|} \mathrm{No} \\ \mathrm{No} \end{array}$	$\begin{aligned} & 16 \times \mathbf{P P}^{1} \\ & 16 \times \mathbf{P 4}{ }^{1} \end{aligned}$	$\left\lvert\, \begin{aligned} & 14 \\ & 14 \end{aligned}\right.$	${ }_{19}^{19}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Ord } \\ & \text { Ord } \end{aligned}\right.$	$\mid 3$		$\begin{aligned} & \text { NT } \\ & \text { NT } \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	$\left\lvert\, \begin{array}{r} 6 \\ 10 \end{array}\right.$	$\begin{array}{\|l\|l\|} \text { No } \\ \text { No } \end{array}$
Regal Electronics Corp. 603 W. 130 St. New York 27, N. Y.	$\begin{aligned} & \text { 19C31, 19D31 } \\ & \text { 19C36, 19D36 } \\ & \text { 22C17, } 2217 \\ & \text { 17T22 } \\ & \text { 17HD36 } \\ & \text { 1708 } \\ & \text { 17HD31 } \\ & \text { 22DD19, } 2219 \end{aligned}$	1931 1936 2217 2217 1736 2217 1731 2219	$\begin{aligned} & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{T} \\ & \mathbf{c} \\ & \mathbf{c} \\ & \mathbf{C} \end{aligned}$	No AM-FM No No AM-FM No No No	$\begin{aligned} & 19 A P 4 A \\ & 19 A P 4 A \\ & 17 B P 4 A \\ & 19 A P 4 A \end{aligned}$	$\begin{array}{\|l\|} \hline 17 \\ 17 \\ 12 \\ 12 \\ 14 \\ 12 \\ 14 \\ 17 \\ \hline \end{array}$	$\begin{aligned} & 31 \\ & 36 \\ & 22 \\ & 22 \\ & 22 \\ & 36 \\ & 22 \\ & 31 \\ & 22 \end{aligned}$	No No Yes Yes No Yes No Yes	Key Key Ord Ord Ord Key Ord Ord Key Ord	4 4 4 4 4 4 4 4	25.75 25.75 26.1 26.1 25.75 26.1 25.75 26.1	No No No No No No No No No	2 2 2 2 2 2 2 2 2	$\begin{array}{\|l\|} \hline 12 \\ 12 \\ 4 \times 6 \\ 42 \\ 12 \\ 12 \\ 12 \\ \hline \end{array}$	
Scott Radio Laboratories, Inc. 4541 Ravenswood Ave. Chicago 40, III.	AC-16 AT-16 310TC 510TC 710W 800B-16 $800 B-19$.910 W	710 710 $710 \& 310$ $710 \& 510$ 710 $8008 \& 710$ $800 B \& 910$ 910	\mathbf{C} \mathbf{C} \mathbf{C} \mathbf{c} \mathbf{C} \mathbf{C} \mathbf{c} \mathbf{C}	No No AM-FM AM-FM No AII All No	$16 K P 4$ $16 K P 4$ $16 K P 4$ $16 K \mathrm{KP}$ 16 KP 16 KP 2004 200 PP 4	11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.5	21 21 33 35 26 26 45 45 26	Yes Yes Yes Yes Yes Yes Yes Yes Yes	Ord Ord Ord Ord Ord Ord Ord Ord Ord	3 3 3 3 3 3 3 3	26.1 26.1 26.1 26.1 26.1 26.1 26.1 26.1	NT NT NT NT NT NT NT NT	$\begin{gathered} 2 \\ 2 \\ 10 \\ 18 \\ 18 \\ 10 \\ 18 \\ 18 \\ 10 \\ \hline \end{gathered}$	10 6 12 12 124 12^{4} 15^{4} 15^{4} 12	No No P \mathbf{P} PA RPRe RPRC PA
Sentinel Radio Corp. 2100 Dempster Evanston, III.	420-TVB, 420-TVM 423-CVB, 423-CVM 424-CVB, 424-CVM 425-CVB, 425-CVM 428-CVB, 428-CVM	20E589 20E644 20 E 644 20 E 652 20 E 67	\mathbf{T} \mathbf{C} \mathbf{C} \mathbf{C}	No No No No No No	16TP4 16TP4 16TP4 190 19AP4A 19AP4A	$\begin{array}{\|l\|} \hline 12-13 \\ 12-13 \\ 12-13 \\ 13 \\ \hline 13 \\ \hline \end{array}$	21 21 21 21 21	Yes Yes Yes Yes Yes Yes	Ord Ord Ord Ord Ord	3 3 3 3	25.5 25.5 25.5 25.5 25.5	$\begin{aligned} & \mathbf{T U} \\ & \mathbf{T U} \\ & \mathbf{T U} \\ & \mathbf{T U} \\ & \mathbf{T U} \end{aligned}$	2.25 2.25 2.25 2.25 2.25	$\begin{array}{\|l\|} \hline 4 \times 6 \\ 10 \\ 12 \\ 12 \\ 12 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { No } \\ \text { No } \end{array}$
Setchell-Carison, Inc. New Brighton, Minn.	$\begin{aligned} & 2500 \\ & 2500 \mathrm{LP} \end{aligned}$	$\begin{aligned} & 25 \\ & \mathbf{2 5} \end{aligned}$	$\begin{aligned} & \mathbf{c} \\ & \mathbf{c} \end{aligned}$	$\begin{aligned} & \text { AM } \\ & \text { AM } \end{aligned}$	$\begin{aligned} & 178 P 4 A \\ & 17 B P 4 A \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 24 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & \text { Key } \\ & \text { Key } \end{aligned}$	4	$\begin{aligned} & 26.1 \\ & 26.1 \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { No } \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ 10 \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { P3 } \\ \text { No } \end{array}$
Shevers, Inc., Harold 123 W. 64 St. New York, N. Y.	Barclay, Bryant, Chelsea, Classic, Digby, Rector, Regency (all 031-A) Visionaire (1261) ${ }^{53}$ Visionaire (1263) ${ }^{53}$ Visionaire (1265) ${ }^{53}$	$\begin{array}{\|l\|} \hline 031-A \\ 126 \\ 126 \\ \hline 12 \\ \hline \end{array}$	$\begin{aligned} & \hline \mathbf{C} \\ & \mathbf{T} \\ & \mathbf{C} \\ & \mathbf{C} \end{aligned}$	No No No No No	16BP4A ${ }^{3 j}$ 12AP4A 12LP4A 12LP4A	$\begin{aligned} & \hline 12 \\ & 10.5 \\ & 10.5 \\ & 10.5 \end{aligned}$	31 26 26 26	$\begin{aligned} & \hline \text { No } \\ & \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \\ & \hline \end{aligned}$	Key Ord Ord Ord	4 4 4 4		$\begin{aligned} & \hline \text { No } \\ & \text { NT } \\ & \text { NT } \\ & \text { NT } \\ & \hline \end{aligned}$	$\begin{aligned} & 3.2 \\ & 1.9 \\ & 1.9 \\ & 1.9 \\ & \hline \end{aligned}$	$\begin{array}{\|r\|} \hline 12 \\ 6 \\ 10 \\ 12 \end{array}$	$\begin{aligned} & \hline \text { No } \\ & \hline \end{aligned}$
Sightmaster Television Corp. 111 Cedar St. New Rochelle, N. Y.	$\begin{aligned} & 16 \mathrm{C51} \\ & \text { 16E51 } \\ & 19 \mathrm{C} 51 \\ & 20 \mathrm{C} 51 \end{aligned}$		$\begin{aligned} & \mathbf{C} \\ & \mathbf{T} \\ & \mathbf{C} \\ & \mathbf{C} \end{aligned}$	FM ${ }^{40}$ $\mathbf{F} \mathbf{M}^{40}$ $\mathbf{F} \mathbf{M}^{40}$	$\begin{aligned} & \text { 16HP4 } \\ & \text { 17AP4 } \\ & \text { 19DP4 } \\ & \text { 20DP4 } \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \\ & 14 \\ & 14 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 23 \\ & 23 \\ & 23 \\ & 23 \\ & \hline \end{aligned}$	Note40 No Note40 Note40	$\begin{array}{\|l\|l\|} \hline \text { Ord } \\ \hline \end{array}$	3 3 3 3 3	25.75 25.75 25.75 25.75	$\begin{array}{\|l\|} \hline \mathbf{T U} \\ \mathbf{T} \mathbf{U} \\ \mathbf{T U} \\ \hline \end{array}$	$\begin{aligned} & 3 \\ & \mathbf{3} \\ & \mathbf{3} \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \mathbf{R C}^{40} \\ \mathbf{R C}^{40} \\ \mathbf{R C}^{40} \\ \mathbf{R C}^{40} \\ \hline \end{array}$
S. M. A. Co. 4721 N. Kedzie Ave. Chicago 35, III.	$\begin{aligned} & \text { CT-111-A } \\ & \text { CT-120-A } \\ & \text { TV-116-A } \end{aligned}$	CTV221A CTV220A CTV219A	$\begin{aligned} & \mathbf{c} \\ & \mathbf{c} \\ & \mathbf{c} \end{aligned}$	$\begin{array}{\|l\|} \hline F M \\ F M \\ F M \\ \hline \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 16HP4 }{ }^{12} \\ \text { 16XP4 } \\ \text { 19AP4 } \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10 \\ 12 \\ \hline 11 \\ \hline \end{array}$	$\begin{aligned} & 21 \\ & 22 \\ & 22 \end{aligned}$	$\begin{array}{\|l} \text { No } \\ \text { No } \\ \text { No } \end{array}$	$\begin{array}{\|l\|} \hline \text { No } \\ \text { Ord } \\ \text { Oo } \\ \hline \end{array}$	3 3 3 3	$\begin{aligned} & 25.75 \\ & 25.75 \\ & 25.75 \end{aligned}$	$\begin{aligned} & \text { TU } \\ & \text { TU } \\ & \hline \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 6 \times 9 \\ 6 \times 9 \\ 12 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { P3 } \\ & \text { P3 } \\ & \text { No } \end{aligned}$
Snaider Television Corp. 540 Bushwick Ave. Brooklyn, N. Y.	Auditorium Champion Champion Champion Crusader Crusader Crusader Portojector	P520 1230 1630 1930 1221 1621 1921 M-PJ-521	$\begin{aligned} & \mathbf{C} \\ & \mathbf{T} \\ & \mathbf{c} \\ & \mathbf{C} \\ & \mathbf{T} \\ & \mathbf{C} \\ & \mathbf{C} \\ & \mathbf{P} \end{aligned}$	SW-FM SW-FM SW-FM SW-FM No No No No No	5TP4 12LP4 16RP4 19AP4 $12 L P 4$ $16 R P 4$ 19AP4 5TP4 ${ }^{31}$ 12	$\begin{aligned} & 27 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 10 \\ & 30 \\ & \hline \end{aligned}$	$\begin{aligned} & 37 \\ & 31 \\ & 31 \\ & 31 \\ & 21 \\ & 21 \\ & 21 \\ & 21 \\ & \hline \end{aligned}$	No No No No Yes Yes Yes	Ord No No No Ord Ord Ord	5 5 5 5 5 3 3 3 3	26.1 26.1 26.1 26.1 25.75 25.75 25.75	No No No No No No No	$\begin{aligned} & \begin{array}{l} 6.5 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3.2 \\ 3 . \end{array} \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 12 \\ & 12 \\ & 10 \\ & 10 \\ & 10 \end{aligned}$	$\begin{array}{\|c} \text { No } \\ \text { No } \end{array}$
Sonora Radio \& Television Corp. 325 N. Hoyne Ave. Chicago 12, III.	$\begin{aligned} & 302 \\ & 303 \\ & 305 \end{aligned}$		T	$\begin{array}{\|l\|} \hline \text { No } \\ \text { No } \\ \text { No } \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { 12LP4 } \\ \text { 12LP4 } \\ \text { 16TP44 } \\ \hline \end{array}$	$\begin{array}{r} 9.5 \\ 9.5 \\ 12.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 19 \\ 19 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & \hline \text { Yes } \\ & \text { Yes } \\ & \text { Yes } \end{aligned}$	Ord Ord Ord	3 3 3	$\begin{array}{\|l} 26.1 \\ 26.1 \\ 26.1 \\ \hline \end{array}$	$\begin{aligned} & \text { NT } \\ & \text { NT } \\ & \text { NT } \end{aligned}$	$\begin{aligned} & \mathbf{2} \\ & \mathbf{2} \\ & 2 \\ & \hline \end{aligned}$	5 8 5	$\begin{array}{\|l} \text { No } \\ \text { No } \\ \text { No } \end{array}$
Sparton Radio-Television 2400 E. Ganson St. Jackson, Mich.	```5002, 5003 5006, 5007 5006X, 5007X 5010, 5011 5014, 5015 5025, 5026 5025-B, 5026-B, 5101, 5102, 5103 5029, 5030 5035, 5036, 5037 5052, 5053```	23TD10 23TD10A 25TK10A 19TS10 19TS10A 26SS160 26SS170 26SD160 26SS160L 24TR10	\mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T} \mathbf{T}	No	10BP4 12LP4 $12 \mathrm{LP4A}$ 10 BP 4 $12 \mathrm{LP4}$ $16 \mathrm{KP4}$ 17 KP 4 A $16 K P 41$ $16 K P 41$ 12 LP 4	$\begin{aligned} & \hline 10 \\ & 10 \\ & 10-12.5 \\ & 8-9.5 \\ & 8-9.5 \\ & 12.5-14 \\ & 12.5-14 \\ & 12.5-14 \\ & 12.5-14 \\ & 9-10.5 \end{aligned}$	24 24 26 21 21 26 26 26 26 27	No No No Yes Yes Yes Yes Yes Yes No	Ord Ord Key Ord Ord Key Key Key Key Ord	4 4 4 4 3 3 3 4 4 4	26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25 26.25	NT NT NT NT NT NT NT TU NT No	2.5 2.5 2.5 1.5 1.5 2.5 2.5 2.5 2.5 2.5	$\begin{gathered} \hline 4 \times 6 \\ 4 \times 6 \\ 5 \times 7 \\ 5 \\ 5 \times 7 \\ 5 \\ 5 \\ 5 \times 7 \\ 5 \times 7 \\ 5 \times 7 \\ 10 \end{gathered}$	No

9		こののロのロのロの				ZaZ루anaganainana
$\stackrel{4}{1}$		$\sim \infty \times \infty$ ）		N^{\sim}		
さ	MNNNNNNNNNNNNNN	NNNNNNNNN	NNNNNT	00	かんしろいいろ NNNNNN	MmNmNNTH
\cdots		そトにトににトにト	FPVP彐	울	ミたたにたた	
ブ		नHननमनननन MलM्NMMNMN			NNNNNN NON N0．0凡ल	
F		mmmmmmmmm	がかもせめ	$m m$	もあもあもも	
9			\|	문문		
©						
∞		ㅅ్N్N్NN్N		Nั	M¢్సN్ల	
N		 	（S） 	ल．		にレレ
\bigcirc						
10				20		
\pm	OUOUOUOUOUOFOUO	トOUOUOUOト	トUUOUト	OF	ひUOUトロ	OUOFFFOUUFOUFFOUU
m					निन नुन	అ్సN
N						
－				8 可苟 $\stackrel{\square}{\circ}$ 品 む敫 우웅		

		2ํํํํํํํํ		윤윤			2%
				n ${ }^{-1}$		－	∞ in
NNNNNN	$\infty \infty \infty \infty \infty \infty \infty \infty \infty \infty$ HनHनHनHनHनH	NNNNNNN	is in NNNHनHFNHNNNH	$\begin{aligned} & \text { ninnonn } \\ & \text { تif } \end{aligned}$	mmmmmmmma	mmm	$\begin{array}{lll}n & n \\ m\end{array}$
울율웅울우		そそヶちヶ上下		と上ヶ		ㅇํㄱ	$\geqslant 2$
 		0000000 N゙	 		 	$\begin{aligned} & \square{ }^{\top N} \\ & \text { No } \end{aligned}$	
寸サ寸寸寸m	mmmmmmmmmmm	mmmmmmm	mmmmmmmmmmmmm	mmm	mめすナmナmma	のサヵ	\pm
	すくす。す。す。す。す。		문문문문문문문둔문문문 0000000000000	둥뭉뭉	둔믄 긍민 군문 	운밍	¢
						윤웅	$\stackrel{\text { ¢ }}{\sim}$
웽్లन్				न今न	N－N్లN్ల్ల్ల	ผセゼ	ก ก
নの戸寸かの		nsinconsincsin 		$\begin{aligned} & \text { nin in } \\ & \text { ָּ } \end{aligned}$	ininsin inin 	नलワ	$\begin{aligned} & \text { non } \\ & \text { N゙ } \end{aligned}$
우운온ㄴㅇํ은		운우융유윤		율윤			알
000 צx 3 33x		טUひUトトト		トטט	טUטUטトט	－	0 F
	UOUOUOUUOU		$0-0^{5} 0$ トトFトFトFトFトFトト	$\begin{aligned} & \text { KNE } \\ & \text { SNE } \\ & \text { Nink } \end{aligned}$			
	${ }^{20}{ }^{20} \mathrm{~N}$ 릉 ジャ 	$\dot{8}$華がシ $\underset{\sim}{\approx}$灵 3° 品 －o 웅 ゅが					

Television DX Reports

WE admire the courage of some of our readers who live in areas not yet blessed by the presence of a television station and who must depend entirely on $d x$ for their reception. Some of these write us about their installations and how they manage to get fairly consistent pickup over rather long distances.

One such letter comes from Maurice Dubreuil of Lavaltrie, Quebec, who not only has a fine antenna installation, but has also constructed some elaborate boosters.
"My receiver was built from a Philmore kit." writes Mr. Dubreuil. "It is an RCA 630TS model, realigned to pass only 2.5 mc . I have changed the 6AG5's for 6BC5's and am working all r.f. and i.f. tubes at about 20% more voltage than the original design calls for.
"Building the receiver was easy, but the boosters were a headache. I have tried all commercial boosters that I could get my hands on, but could only get a little sound once in a while, so I started fooling around with building some.
"My first booster was a tuned-plate

6 AK5 working into a 6 J 4 followed by nine 6AK5's. It worked pretty well, but gave a lot of noise. The one I am using now has a 6 J 6 neutralized pushpull input feeding a pair of 6AK5's in push-pull. This works into a 6AK5 buffer which has no gain and then to two more 6J6 stages. Results with this booster are very good.
"For antennas I use two doublestacked Yagis cut for channel 4 and channel 5 (my boosters are good only on these channels), and a Vee-DX RD13A for all other channels. The antennas are on a tower 80 feet high, and I intend to put up a 150 -foot tower soon. With this equipment I get daily reception from WRGB, channel 4, in Schenectady and WSYR-TV, channel 5 , in Syracuse, both more than 260 miles distant."
Mr. Dubreuil also reports that he picked up WMBR-TV in Jacksonville and WTVJ in Miami, Florida, quite regularly during warm nights in July and August. The distance to these stations is about 1,200 and 1,500 miles. He has also received KOB-TV, channel 4, in Albuquerque, New Mexico which, according to our atlas, is over 1,850 miles.

Other channel 4 stations that Mr. Dubreuil has picked up during the summer are WLW-T in Cincinnati, Ohio; WTAR-TV, Richmond, Virginia; and WMCT, Memphis, Tennessee. Channel 5 stations are WOC-TV, Davenport, Iowa; KSTP-TV, St. Paul, Minnesota; KSD-TV, St. Louis; WSAZ-TV, Huntington, West Virginia; and WAGATV, Atlanta, Georgia.
While this installation is perhaps a little more elaborate than most dx'ers would care to use, it does show that dx can be had fairly consistently with good equipment. We thank Mr. Dubreuil for sending us the details of his TV receiving setup, and also thank all the the others who have sent us the dx reports which are listed in the two tables below.
Occasionally we get reports of $d x$ from Europe where television is now becoming more common. One report is of an Italian in Turin who received the British station at Sutton Coldfield, a distance of 1,300 kilometers. Now that a common set of European standards is being accepted by many countries, we should be getting more reports of $d x$ from abroad.

TABLE I-REPORT OF RECEPTION

Station	REPORTED BY	tIME RECEIVED	MILE-	Station	REPORTED BY	TIME RECEIVED	MILE- AGE	Station	REPORTED BY	TIME RECEIVED	MILE
KMTV Channel 3 Omaha, Neb.	W. L. Thompson	${ }_{i}^{10 / 55 \mathrm{pm}}$	$\frac{1,200}{1,260}$	WLW-T Channel 4 Cincinnati, Ohio	L. A. Canning	8/12/49	1,025	WRGB Channel 4 Schenectady, N. Y.	F. C. Meyers	7/16	1,160
KNBH Channel 4 Los Angeles, Cal.	C. G. Hailey	$6 / 24$	1,260	WMAR-TV Channel 2 Baltimore, Md.	F. C. Meyers	7/16	1,050	WSPD-TV Channel 13 Toledo, Ohio	E. Gustafson	$\text { 10/21, }{ }_{7-8: 30}$	475
KPHO-TV Channel 5 Phoenix, Ariz.	E. Gustafson	6/21. 5 pm	1,250	WMCT Channel 4 Memphis, Tenn.	C. T. Tripp	7/20, evening	1,000	WTAR-TV Channel 4 Norfolk, Va.	F. C. Meyers	7/6, 6 pm	1,100
WBTV Channel 3 Charlotte, N. C	L. A. Canning	7/20	1,150	Tenn. WNBT Channel 4 New York, N. Y.	F. C. Meyers	7/21	1,160	WTCN-TV Channel 4 Minneapolis, Minn.	R. J. Walker	6/11	1,500
WBZ-TV Channel 4 Boston. Mass.	R. J. Walker E. Gustafson F. C. Meyers	$\begin{aligned} & 6 / 11 \\ & 6 / 30.6 \mathrm{pm} \\ & 7 / 16 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 1,100 \\ 1,050 \\ 1,300 \end{array}$	WNBW Channel 4 Washington, D. C.	F. C. Meyers	7/21	1,050	WTMJ-TV Channel 3 Milwaukee, Wis.	L. A. Canning	8/5	1,200
WCBS-TV Channel 2 New York, N. Y.	F. C. Meyers H. L. Robins	$\begin{aligned} & 7 / 16,2 \mathrm{pm} \\ & 10 / 15 \end{aligned}$	$\begin{aligned} & 1,160 \\ & 1,010 \end{aligned}$					WTTG Channel 5 Washington, D. C.	F. C. Meyers	7/31, noon	1,010
N. Y.	L. A. Canning	10/30	450	WOAI-TV Channel 4 San Antonio, Tex.	R. J. Walker	6.11	1,100				
Channel 11 Providence R. 1.				WPTZ Channel 3 Philadelphia, Pa.	F. C. Mevers	722	1,110	WTVJ Channel 4 Miami, Fla.	C. T. Tripp	$7_{6: 45 \mathrm{pm}}$	1,440
WLAV-TV Channel 7 Grand Rapids, Mich.	E. Gustafson	$\begin{gathered} 10 \cdot 21,3 \\ 78: 30 \mathrm{pm} \end{gathered}$	475					WXEL Channel $\%$ Cleveland, Ohio	E. Gustafson	10/22	600

TABLE II-RECEIVER DATA

NAME	LOCATION	RECEIVER	$\left\|\begin{array}{c} \text { BOOST } \\ \text { ER } \end{array}\right\|$	ANTENNA	NAME	LOCATION	RECEIVER	$\underset{\text { ER }}{\|B O O S T-\|}$	ANTENNA
L. A. Canning	Halifax, N. S.	Marconi Northern Electric	National Masco	2-bay conical conical	W. L. Thompson	Saugus, Cal.	Radio Craftsman	$\left\lvert\, \begin{gathered} \text { Electro- } \\ \text { Voice } \end{gathered}\right.$	rhombic with 2,500 fit open line
E. Gustafson	Keokuk, la.	Cossor Motorola 12VF4	Regency	stacked Yagi ch. 5 Yagi	F. C. Meyers H. L. Robins	Belleville, Kan. Tampa, Fla.	Admiral 32×15	Anchor Astatic	4-bay array stacked array
c. G. Hailey	Robstown, Tex.	Motorola 9VT1	(Jerrold	onical	C. T. Tripp R. J. Walker	Dannemora, Daytona, Fla.	DeWald Du Mont	Anchor Astatic	ch. 4 Yagi 5-element beam

Part IV-Long division with relays-our little electric brain learns how to divide and to convert decimal numbers to binary and back again. Simon is getting an education

By EDMUND C. BERKELEY* and ROBERT A. JENSEN

PREVIOUS articles of this series have shown how an electric brain made of relays can add, subtract, and multiply.
Now we shall carry out division. As before, we shall consider the process in binary notation, the scale of two.

As a second topic, we shall consider how to make a relay calculator convert a number from decimal notation to binary notation, and back again. There is every reason in the world why the machine itself should convert any decimal number, say 23 , into the corresponding binary number (in this case 10111, one-oh-one-one-one, or one 16 plus no 8 's plus one 4 plus one 2 plus one 1).
Addition, subtraction, and multiplication turned out to be very simple in binary notation as compared with decimal. The same is true with division: binary division is simple as can be.

Suppose we divide 1101 (one-one-ohone, or 8 plus 4 plus 1 , or 13 in decimal) into 10000101 (one-oh-oh-oh-oh-one-oh-one, or 128 plus 4 plus 1, or 133.
We do this in the same general way as we do in decimal division, except that we act as if we knew only the two digits 1 and 0 :

	01010	(Quotient)
(Divisor)	$1 1 0 1 \longdiv { 1 0 0 0 0 1 0 1 }$	(Dividend)
	0000	
	$\overline{10000}$ (1st	st Partial
	1101	Remainder)
	0111	(2nd Partial
	0000	Remainder)
	1110	(3rd Partial
	1101	Remainder)
	0011	(4th Partial
	0000	Remainder)
	011	(Remainder)

Only two multiples of the divisor are used, one times the divisor, and zero times the divisor-and the latter is of course zero in every digit. No other multiples of the divisor are needed. If we simply compare the divisor with the partial remainder at any point in the division, we can tell whether the digit of the quotient is 1 or 0 .

Circuits for division

As before, to keep the circuits simple, let us ignore a number of fine points, such as: fractions; the binal point (the analogue in the scale of two of the decimal point in the scale of ten);

[^6]positive and negative numbers; size of numbers; etc. Suppose that we have an eight binary digit dividend, and a four binary digit divisor.

The circuit is on the opposite page. In part 1, terminal T1 is energized at the start, and holds up the relays storing the dividend through their hold contacts. (All current-carrying circuits and relay contacts in the energized state are in red.) The actual number which these relays store, of course, depends on something that happened before the time at which we begin. In the same way, the divisor is stored in relays of part 2 of the circuit, and terminal T2 holds them up.

Now different things have to happen at different stages during the division. So we want to have some relays that will tell us at what stage we are during the process of the division. This is the function of the K relays of part 3 of the circuit. The stages that they detect and report are $0,1,2,3,4$. The time chart in Fig. 1 shows that stage 0 lasts from time : to time 8, stage 1 from times 9 to 16 , stage 2 from times 17 to 24 , etc. At stage 0 , we attend to the first quotient digit; at stage 1, we attend to the second quotient digit; etc. The red parts of the circuit apply to the first stage of the division only.

We have to start off the divisions by selecting some digits, which we can call a partial remainder (see part 4). At stage 0 , this is the first four digits of the dividend; but at later stages this is the result of a subtraction together with "bringing down" one more digit
of the dividend. The circuit of part 4 shows that at each stage of the division, we have just the partial remainder that we desire stored in the E relays. We have to look ahead to part 8 , of course, and take on faith that the G relay contacts in part 4 will express the result of a subtraction that we want.

The next thing that we must do is decide whether the divisor "goes" into the partial remainder, or whether it "doesn't go". To make this decision, we must compare two numbers and decide which is the larger. The divisor "goes" and yields 1 as a digit of the quotient if, and only if, the partial remainder is larger. A circuit that does exactly this is shown in part 5. The red contacts show the original partial remainder (stored in the E relays) and the divisor (A relays). We see that there is no path for the quotient relay Q to be energized, and so the first "quotient digit" is 0 .

Before we go any further, we want to store that quotient digit, so that we shall know the whole quotient when we get through with the division. This duty is performed by the circuit of part 6, which shows how the digit quotient is routed, according to the time it is obtained, into the right C relay.

We now want to determine the multiple of the divisor that depends on the quotient digit and the divisor. This is the function of part 7 of the circuit, which will give us the divisor itself if the quotient digit is one and zero in all digits. if the quotient digit is zero.

In part 8 of the dividing circuit, the subtraction of the divisor multiple from the partial remainder is indicated schematically, because actual circuits for subtraction were discussed previously.

The timing of the circuits, up to the end of the first two quotient digits, is shown in the timing chart of Fig. 1. The same conventions are used here as in the time chart for multiplication in the previous article. Successive time

TERMINAL	RELAYS	FUNCTION OF	1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
TI	D																				
12	A																				
T3.1	KI				0			9				$x-$									
T3.2	K_{2}																				
T3.3	K1,2																				
T3.4	K4																				
T4.1	E	D, K, G																			
T4.2	E	E				,					-										
T5	Q	A, E																			
T6.1	c	K, 0																			
T6.2	E	c																			
77	8	A, 0																			
T\%	G	E, B			0								-								-0-

Fig. 1-Timing chart which shows the sequence of operation for the first two stages of the division with binary numbers performed by the circuit of Fig. 1.

intervals $1,2,3,4$, are shown from left to right. In the first column, the different terminals are shown from top to bottom; in the second column, the names of the relays which the terminals energize; in the third column the names of the relay contacts through which the relays are energized. Each horizontal line begins when its terminal is energized, and stops when its terminal ceases to be energized. There are some vertical lines showing X's and O's. X marks the relays energized at a certain time, and the O's mark the contacts through which they are energized.

Now, you may say, it is all very well to be able to audd, subtract, multiply and divide in binary notation. but how do we go from decimals to binaries?

In fact, even before we ask this question, we have to ask: how will the machine take in a decimal number? In other words, how will the machime accept it, record it, and store it?

Ordinarily a calculating machine (or some auxiliary part of it) will have a keyboard, containing kers numbered $0,1,2$ up to 9 . Often the keyboard will have a different column for cach column of the number to be inserted in the machine. To put in a number like $59: ;$ we press down the 5 key in one column, the 9 key in the next columm, and the 3 key in the third column.

In many calculating machines. the result of pressing down a key, say 3 is to turn some little counter wheel "11, of one complete turn. But in our machine we want the result of pressing down the :; key to be the energizing of certain relays, so that we can use the information later in the machine.

We would reasonably desire to convert any one of these ten decimal digit0 to 9 into a pure binary number according to T:ible I.
Fig 2 is a circuit which will do this (using 15 rectifiers and 4 relays).
For example, if we press the :; key. relays $A 2$ and $A 1$ are ener i\%ed. but not relays $A \mathcal{B}$ and $A 4$, and so the information produced in the relay register is 0011, which is the binary number three.

In this way the decimal number 5o: can be converted into 010110010011 stored in 12 redays. This form of representing a de inal number by a "code" for e ch digit is conded decinal notation.
Now how do we go from 01011001 0011 to what this number is in pure binary notation? 59: of course is 5 times 10 times 10 , plus 9 times 10 , plus

Table 1-Dacimal to			Binary
Conversion			
Decimal	Binary	Decimal	Binary
0	0	5	101
1	1	0	110
2	10	7	111
3	11	8	1000
4	100	9	1001

The circuit for doing long division with relays. Binary numbers are used for the process, and the circuits that carry current are shown in red.
 POWER SERIES

A comprehensive line of 35 pari numbers designed for replacement and new construction. Wide range of applications based on a tharaugh study of todoy's power transformer needs. Most rotings available in a choice of
verfical or horizontal mountings.

OUTDOOR LINE TO VOICE COIL

Two new units designed to fit most needed outdoor opplications. Primary impedonces of $3,000 / 2,000 / 1,500 /$. impedonces of $3,000 / 2,000 / 1,500 /-$ $1,000 / 500$ ohms; secondary imped-
ances of $16 / 8 / 4$ ohms. Part Number A. 3333 roted of 14 watts. A-3334 rated at 25 walts.

STANCOR

TRANSFORMERS

Using Stancor replacement transformers for your radio, TV and sound service jobs is the sure way to fatten your bank account. Here's why -

- Quality comes first with Stancor. Ability to "take it" cuis down call-backs-keeps your customers happy with a good job.
- Stancor has the largest line in the industry. A choice of $\mathbf{4 5 0}$ part numbers, in some $\mathbf{3 0}$ mounting and terminal styles, enables you to get exoctly the right unit for almost any application.
- Easy-to-reod instruction sheets and clearly marked terminals moke your job quicker ond eosier. Saves valuoble shop time.

New Stancor units ore coming out all the time. Keep posted. Ask yaur Stancor distributor for our latest catalogs.

3, and all we have to do is write this in binary and tell our machine do it: 0101 times 1010 times 1010 plus 1001 times 1010, plus 0011.

And this our machine can do because it has an addition circuit and a multiplication circuit.

It will be neater to prorram this operation with:

5 times 10, plus 9,
all times 10 , plus 3 .
Thus for a ten-digit decimal umber, we shall only need nine multiplications.

Binary to decimal

Now suppose that we have the opposite problem. Given a binary number, we want to find the corresponding
decimal number. We divide this number by 1010 (one-oh-one-oh, or 8 plus 2 , or 10 in binary) and find the remainder, which will be less than 10 , and store it. Then we take the quotient. and divide that by 1010 , and store the new remainder. And so on.

Fig. 3-Circuit for converting t-digit binary system digits to decimal digits.

There's Only ONE COMPLITECATALOG for EVERYTHNG IN RADOO, TELEVSION \& INDUSTRIAL ELECTRONICS

Trs vour the ALLIED 22 pene VALUE-PACKED CATALOG!

MERE'S the only complete Buying Guide to ITV, Radio and Industrial Electronicspacked with the world's largest selections of quality equipment at lowest, money-saving prices. See the latest in TV, AM and FM receivers; radio-phonos; new Sound Systems and P.A. equipment; high-fidelity custom sound components; recorders and accessories; full selections of newest Amateur receivers and station gear; test instruments; builders' kits: huge listings of parts, tubes, tools, books - the world's most complete stocks of quality equipment
allaed gives you every busing advantage: speedy delivery, expert personal help, lowest prices, assured satisfaction, liberal time payment terms. Get the 1951 allind Catalog. Keep it handy-it will save you time and money. Send today for your free copy!

The author's roncept of a string of the electric suaceships on a flight through outer space. Because there is no grawity, the salucer-like ships can be made extremely light by earthly standards. athough they cannot land on a planet.

SPACESHIPS

Part II-Using the sun's energy

By PROFESSOR HERMANN OBERTH

|This second article of this series we shall discuss the details of a spaceship and its power plant-the energy sonrce being the sun's rays." A large mirror concentrates solar heat on a specially constructed boiler. The vapor produced by the boiler drives a turbine, and the turbine in turn drives a special electric generator which provides both the propelling foree and control for the ship.

The parabolic mirror 1 (see Fig. 1) reflects the sunlight on the boiler 2 which drives the dynamo. (Whether this should be a dynamo or an influence machine of the Wommelsdorf type depends on the behavior of the electrodes in outer space, a factor which cannot
ret be predicted. My present leeling is that the Wommelsdorf machine is most suitable.)

The side of the boiler toward the mirror has a dark surface, while the side away from the mirror has a reHecting surface to reduce heat loss. The elements marked 3 are supporting rodz Like the mirror, these can be very lightly built (by earthly standards) because of the extraordinarily slight aceeleration.

An exhaust pipe 4 leads the vapor in a spiral to the shady side of the mirror where the vapor condenses. Another pipe leads the condensed vapol back to the boiler. (I purposely avoid using the terms watex and steam because other
liquids are better suited for this machine.)
The two electrode counles are marked 5. and are of the type described in the first ar-ticle. These can be rotated about axis \dot{b}. Since the mirror itself can be rotated about its own axis and the direction of this axis is that of the sun's rays, the recoil can be made to work in any direction in space. With the couples in the position shown, acceleration takes place in the direction of the arrow.

The slight acceleration which the recoil imparts to the apparatus is not enough to separate the vapor and the liquid from each other, and even this slight afceleration is available only alter the boiler hegins to function. Furthermore, the liçuid can collect on the side facing the mirror only when the acceleration is toward the sum; otherwise the empty wall rould be heaterl.

A rotating boiler

We can overcome this difficulty as well as gain other constructional adrantages by allowing the entioe cylindrical boiler to rotate about its own axis. Fig. 2 is a sletch of the boiler. Here 1 is the boiler and 2 is the working liquitl which, because of the rapid

PERFECT

IS AS SIMPLE AS

You can have nearly perfect TV reception strong, "snow'-free images - regardless of how faint an image you now receive - with the complete Tel-a-Ray System for fringe areas! It's simple and economical.

The first step in the Tel-a-Ray System is the Tel-a-Ray " T " antenna, which consistently receives images from stations 200 miles away.

To your Model T antenna, mount the new, powerful Tel-a-Ray Pre-Amplifier. This amazing new product of the Tel-a-Ray Research Department eliminates, or greatly reduces, "snow." Because it mounts right to the ântenna, it has a high signal-to-noise ratio, bringing you stronger, clearer pictures with less noise. It furnishes consistent reception beyond the fringes and eliminates matching problems and line loss. It is completely weatherresistant, like all Tel-a-Ray products, and sells at a much lower price than other antenna-mounted
amplifiers or boosters.

WITH THE COMPLETE

- The final step that brings you almost perfect TV reception is your TV receiver. This simple parlay, A-B-C, is your guarantee of hours of television pleasure, unmarred by foggy images and irritating noise.

FOR PRIMARY AREAS

The Tel-a-Ray Butterfly receives 13 channels and $F M$ radio. Guaranteed to be weather-resistant, it will consistenlly provide the best reception possible. And the price is just $\$ 2.95$ (suggested list).

Televiewers throughout the country have come to associate the name Tel-a-Ray with good reception through qualify products. If you have a parlicular reception problem, Tel-a-Ray engineers will be glad to help you.

SURE CURE FOR BATTERY HERDACHES

BATTERY ELIMINATORS

SAVE TIME,MONEY..
 Servicing DC Equipment
 From AC lines!

 DEMONSTRATE and TEST
 CAR, AIR, MARINE RADIOS
 other low voltage devices. End costly storoge battery foilures with Electro's dependabl power supply Lower-priced new exclusive con ower supply. Lower-priced: new exclusive con outaut and silent long-life operotion. 6 volts 20 amps
 New Low Cost "BJ" JUNIOR DC POWER SUPPLY, 6 volts, 12.5 omps .

OVER 2 MILLION

 Buttery Radios Offer Huge PROFIT Market! with Selenium Rectifie
CONVERT BATTERY RADIOS to AC ALL-ELECTRIC

Now is the time your customers want depend. able all-electric hum-free performance tep this big timely market now! Operates any 1.4 volt 4 to 6 tube battery radio from 115 volt $50 / 60$ cycle source. Fits most radios. Guar inteed 3 years.

SEND COUPON NOW!
ELECTRO PRODUCTS LABORATORIES
4507-BS Ravenswood Ave., Chicago 40. III.

Name.
Address
City.
Zene... State
In Canada: Atlas Radio Corp. Limited, Toronto
otation, collects on the boiler walls. The vapor collects in the middle of the boiler and flows to the turbine 3 , which I have taken to be a two-stage machine. The guide vanes of the turbine are rigidly connected to the boiler wall.

The vapor then enters pipe 4 which leads it to the shadow of the mirror where it is condensed, and the liquid returns through pipe 5 . From 5 the liquid enters funnel 6 which is rigidly attached to the boiler and rotates with it. Centrifugal force then drives the liquid out of 6 and into the boiler

17 which is permeable to both heat and light, and the rest of 16 is made of reflecting sheet metal. The outside of the boiler is black. The space between 1 and 16 or 17 is, of course, filled with vapor at the temperature of the boiler and at the same pressure as the exhaust vapor at 4.

Completely sealed

No rotating parts of the machine pierce the outer wall at $4,5,16$, or 17 . The machine can therefore be effec tively sealed off against losses of the

Fig. 1-Drawing showing the essential parts of the solar-powered spaceship.
through the tubes marked 7. Valves to prevent backflow of the liquid are marked 8 .

The rotating vanes 10 of the turbine are mounted on shaft 9 which rotates within the boiler but in the opposite direction. The rotor runs at a hypercritical velocity and therefore acts as its own counterbalance.

The source of current, here taken to be a Wommelsdorf machine (an intproved influence machine invented in 1922), is indicated by 13 , and 12 is a special coupling unit. The space within this machine is at the same pressure as the boiler for better efficiency and simpler construction.

The construction of the machine would be greatly simplified if the vapor within the boiler could flow freely in and out through 11, but this is not possible if water is used as the working fluid. The stator of the current generator 13 rotates in the same direction as the boiler, while the rotor turns with shaft 9. Slip rings are marked 14 and 14^{\prime}, while 15 and 15^{\prime} are current collectors. The potential difference between these will be in the order of several thousand volts, but it is possible to insulate the rings very effectively in gravitationless space.

In Fig. 2 we also have 16, a casing which contains the whole machine. On the side toward the mirror is a window
working liquid-a most necessary neasure.
In this machine three rotations are possible with respect to shaft 9 :
a. Rotation of the shaft and of the otors;
b. Rotation of the boiler together with the stators;
c. Finally, the casing 16 together with all the other equipment, rods, mirror, electrodes, etc., can be brought to rotate about the boiler shaft.

In fact, because of the friction in bearings 18 and 19 , the boiler must eventually impart its rotation to the rest of the device, while the turbine rotors 3 and the rotors of the current generator 18 absorb the opposite momentum.
I have therefore provided for another influence machine 20 , whose stator is rigidly connected with the outer casin. 16 while its rotor is similarly fastened to the shaft of the boiler. Depending on which direction the current flows through this machine, it will exert a turning moment on 16 . Thus it is backed up, so to speak, on the boiler and accordingly turns the rest of the machine in the right position.

It would be advantageous to connect several such mirror engines with cables which, because of the small current can be quite thin. The artist's drawing shows a string of such engines. In the

Anailable Now!' CRITICCL TV COMPONENTS

DEALERS AND SERVICEMEN - Your share of today's multi-million dollar TV replacement market is limited only by your ability to handle it. Now you can get ferrite transformers, ferrite core yokes, linearity controls, focus coils-the vital TV components you need-from one dependable source-General Electric! Don't wait to cash in on the biggest new business in television history-call your distributor today and stock the General Electric line!

RECEIVER MANUFACTURERS-Here's a way to cut production headaches and manufacturing costs! You simplify ordering and delivery when you design G-E components into your sets. Remember, too, that your sets will be serviced in the field because G-E distributors and dealers everywhere stock these parts. Let us review your requirements for next year's production right now. General Electric application engineers are at your service.

GENERAL

General Electric Company, Section 4511 Electronics Park, Syracuse, New York
Rush me the new G-E Catalog of TV Components.

> NAME

ADDRESS
CITY \qquad

A satinfied customer is your mozt raluable business asset. You take a chance on losing him with "just-as-roocl" replacement parts. Standardize on Ohmite resistance components-known the world over for top dependability among servicemen, amateurs, and design engineers. It's smart business!

OHMITE MANUFACTURING COMPANY
4894 Flournoy St., Chicago 44, llinois

Be Right with OHMITE

foreground, to the rigit is the shelter or cabin for the space travelers. Ordinarily they occups two chambers, comected by a long cable. which rotate about the common center of gravity. In this way the illusion of weight arises. Near the center of qravity is a pair of clectrodes which draws its power from the mirror engines through the common cable. One can also imagine a switch point placed between the two electrodes to conncet the influence machines either in parallel or in series.

Power and efficiency

We must now say something about the propulsive power and the efficiencer of the electric spaceship.
The machines naturally perform better the stronger the sumlight. Fur example, in the vicinity of Venus they could accomplish twice as much as in the neighborhood of the earth. But ot course the exact valu: of the solar constant outside the eartin: atmosphere is unknown. Since the appropriate masmements are not avaibable, I wouid guess it to be about 2.2 gram-calortes per square centimeter per minute, and for our purpose this is close enough. Converted into the corresponding values for square meters and meterbilograms per second, the radiation falling on each square meter is 150 miseisec. We can assume that the boiler can use about 30 , of this cnerey, which might appear to be quite high, but we are justified in assuming a high operating efficiency hore. The influence machine would, in turn, convest about 95^{\prime}; of this into electuical eneroy, which, expressed in $m-g /$ sec per square meter of the mirror surface. comes to $44.5 \mathrm{~m}-\mathrm{g} /$ seem ${ }^{2}$.
We can assume that without the fuel the apparatus weigh= 400 prams per m^{2}. This apperars to be very small. but because of the slight requirements which they must mect from a statics point of view, these machines do not need to be heavier. Naturally one can take as much propellant for such a machine as is desired.

The first problem which could be solved-which, incidently could be solved with liquid propellants only at great, unnecessary expense-would he the construction of a station circulating about the earth at a distance of 42.100 km labout 25.300 milest above the conter of the earth or $35,700 \mathrm{~km}$ (about 21,420 miles) above its surface at a velocity of $1,723 \mathrm{~m}$ sec $(3,850$ miles an hour). Such a station would always hover ahove the same point on the equator if its orbit were in the equatorial plane. Otherwise it would der seribe a figure eight, as seen from the earth, which would bing it over the same point of the equator twice a day, Such a station would be extremely valuable for television as well as for many other, particularly military, uses.
The next problem for the electric spaceship would be a fight around the moon.

The electric spaceship could also carry out interplanetary flights, and indeed, this could be done in several

IS the largest selling SIGNAL BOOSTER!

BECAUSE... Regency wins all performance tests in nationally-known laboratories . . Regency is the lowest priced QUALITY Television Signal Booster ... Regency offers such features as simplified tuning control; easy installation; full coverage on all 12 channels . . . ard Regency is UNDERWRITERS' APPROVED. REGENCY Division, I.D.E.A. INC. - 55 New Jersey Street, Indianapolis 4, Indiana

USE PHOTOFACT
 the world's best Radio-TV service data-it pays for itself every working day

Try PHOTOFACT!

WE'LL PROVE YOU'LL SAVE TIME and EARN MORE WITH PHOTOFACT
NOW-learn for yourself-at our expensehow photofact makes your Radio and TV work quicker, easier, more profitable! Examine an actual photofact Folder. Use it. You'll learn first-hand why over 35,000 successful service technicians use photofact daily. You'll learn that no other service gives you pнотоFACT's completeness, accuracy, uniformity, and lou'est cost. pHOTOFACT is the only radio and TV service data prepared from laboratory analysis of the actual equipment. Know the facts-get your free Folder now. Examine, use, compare-learn why no modern service shop can afford to be without photofact!

NOTE: Our FREE Folder offer is limited to Service Technicians only. Altach coupon below to your letterhead and mention your jobber's name. If you have no letterhead, send coupon to your jobber. Experimenters and others may obtain the Photofact Folder by remitting amount shown below.

HOWARD W. SAMS \& CO., INC. 2201 E. 46th Si., Indionapalis 5, Ind.Send FREE Photofact Cumulotive Index Send Full Easy-Poy Details

Iam o Service Technician:

\square Send FREE Folder far set madel.I om on Experimenter: Enclosed \$........
\square Sond Falder for set madel. .
TV. 51.00 . Record Changer of Comm. Receiver-75c. AM/5M.50c
\qquad
\qquad
City Lone . . . State
months, whereas it has been estimated that such voyages would have to be reckoned in terms of years if liquid propellants alone were used (cf. Hohmann: Die Eireichbarkcit de, Himmel. slimpers [The Attainability of the Celestial Bodies]).

In any case this spaceship could not land on one of the larger celestial bodies-it is far too weakly constructerl for that. For this purpose it would have to carry a space boat which would be powered with atomic energy or with liquid propellant, while the spaceship itself circled about the celestial hodylike an observer's station without further expenditure of fuel.

Besides these two possibilitiespowering the space boat with fuel or with atonic energy-there is a third. at least for visiting celestial bodie: which have no atmosphere. like the moon.

Corpuscular radiations contain very little matter. At high potentials thee. have only a very slight impact force.
its acceleration can be much greater and its construction heavier and more compact.

Mathematical Analysis

From our estimated solar constant we might expect a kinetic energy of 8.8 to 14.6 mkg sec $m \because$. If we wish to give the propellant a velocity of 10 $\mathrm{km} / \mathrm{sec}$, then 1 gram of the latter contains kinetic energy equal to 5,100 m / kg. It therefore follows that at a distance of 150 million kilometers from the sun, energy can be radiated at a rate of $8.8: 5100=1.7 \mathrm{mgr}$ sece to $14.6:-, 100=3 \mathrm{mgr} / \mathrm{sec}$ per second per square meter of the mirror surface.

If the electric spaceship carries \because kig $(1 \mathrm{~kg}=2.2 \mathrm{lbs}$.$) of matter per stuare$ meter of mirror surface, this would suffice for a period of acceleration of from $670,000 \mathrm{sec}$. or 8 days to $1,170,000$ sec. or 14 days.

The total increase in velocity would

Fig. - A simplified crosssection of the vapor driven power plant proposed for the spaceship. The entire unit can be sealed against losses of the vapor.
but they do have a high energy content. We can also assume that, given high enough velocities, the particles would travel a great distance in paralled paths.

Equally charged mass-particles repel each other, but currents traveling in the same direction attract each other. Moving charged particles are electric currents. If we can impart a high enough veloeity to streams of particles, it is reasonable to assume that the particles would no longer tend to fly apart. Of course this will have to be tested first on a station in cosmic space, for I would not care to extrapolate blindly the results obtained from Geissler tuhes and cerclotron streams to the corpusclar streams from an electric spaceship. I assume that this would certainly succeed with electron streams, but whether it would work with positive rays is something I do not care to affirm.

The spaceboat could receive in a Faraday cage the corpuscles streaming toward it and with this help generate an electric wind whose reaction is sufficient for landing on Mercury, the moon, or Ceres. Since it is also much lighter' than the spaceship and does not have to carry the latter's machinery with it,
$v_{1}=10 \ln \begin{gathered}2,400 \mathrm{gr} \\ 400 \mathrm{gr}\end{gathered}=17,918 \mathrm{~m} / \mathrm{sec}$.
I have added the subsceript ito v hecause the spaceship would attain this velocity only in gravitationless space. If it started out from a station rotating about the earth, it would have to exceed the velocity of the station. In so doing. the original circular orbit (in the sense indicated by the Keplerian laws of planetary motion) would first have to pass over to an elliptical orbit; however, the ellipse would not be completed. but in each instant it would develop into an ever wider ellipse, so long as the machine operates.

Accordingly the spateship ascends in a spiral path, the differential equation of which cannot be integrated in a closed expression. And its velocity actually diminishes in the process at the same time that its total energy, because of the increment of potential energy, increases. Thus v_{1} indicates only the so-called ideal velocity. I would also like to point out that of this 17 $\mathrm{km} / \mathrm{sec}$ only about one-half or 9,000 $\mathrm{m} / \mathrm{sec}$ can be used for propulsion, while the remainder must be used to check the velocity in the vicinity of the goal.

The following formulas refer to fuel

PROOF IS IN RESULTS! Nation-wide TV

NEW DELUXE MODEL HIR IS FULIY aUTOMATIC!

> Advertising Delivers Thousands of Sales-Every Week!
> Over 50 key TV stations demonstrate Alliance Tenna-Rotor to 7 million viewers! Tenna-Rotor is the only TV accessory backed by a powerful, sustained television campaign - national in scope! Hundredsof thousandsof Alliance Tenna-Rotors are in use! Alliance Tenna-Rotor offers faster installation with Alliance 4-conductor "Zip" cable-Works in all weather-Guaranteed for one year-Approved by Underwriters' Laboratories.

ALLIANCE TENNA-SCOPE

-the New TV Booster! Fea fures one simple control. Automatic on-off switch. Gives maximum uniform high gain on all channels -quick to install! An excellent companion item to Tenna-Rotor TENNA-SCOPE

SENSATIONAL TRIO TV YAGI PROVIDES HIEH GAIM OM 2 CHANIELS

consumption, increase of velocity, and the duration of the acceleration:
$m=m_{0}+m^{\prime}$ t.
where m is the mass of the electric spaceship, m_{0} its initial mass, t the time, and m^{\prime} the quantity of fuel or propellant expelled during each second. Obviously the spaceship expels the same quantity of propellant in each second, since its distance from the sun does not change so tapidly, and, to save time, the machines are allowed to run at the highest number of revolutions per minute so long as they must operate. From (1) and the equation for velocity increase (see Part I) we obtain the increase in velocity between the times t and t_{2} :

$$
\begin{equation*}
\mathrm{v}=\mathrm{c} \ln \frac{\mathrm{~m}_{, 1}-\mathrm{m}^{\prime} \mathrm{t}_{1}}{\mathrm{~m}_{0}-\mathrm{m}^{\prime} \mathrm{t}} \tag{2}
\end{equation*}
$$

From this we get:

$$
\begin{equation*}
\mathrm{t}_{2}=\frac{\mathrm{m}_{0}}{\mathrm{~m}^{2}}\left(1-\mathrm{e}^{-v / c}\right)+\mathrm{e}^{-v / c} \mathrm{t}_{1} \tag{3-a}
\end{equation*}
$$

If we substitute m for $m_{0}-m^{\prime} t_{\text {and }}$ and t for $t_{2}-t_{1}$ we get.

$$
\begin{equation*}
\mathrm{t}=\frac{1}{\mathrm{~m}^{\prime}}\left(\mathrm{m}_{\mathrm{s}}-\mathrm{m}_{\mathrm{t}}\right) \tag{3-b}
\end{equation*}
$$

It is obvious that all the energy derived from the source of current will not be used for the acceleration of the propellant. A large part of it is lost in the charging processes going on. Moreover, not all the corpuscles fly off at the same speed, so that here too a certain amount of energy is lost.

It would take us too far afield, and would also be pointless in view of the uncertainty of the estimates referred to above, to describe exactly how I arrived at the values used. But I estimate that the kinetic energy of the expelled particles constitutes about one-fifth to onethird of the electrical energy supplied. While this may seem a rather low etticiency, it is no problem as we have an unlimited energy source from the sun.

With an exhaust or repulsion velocity of $20 \mathrm{~km} / \mathrm{sec}, v_{i}$ would therefore be twice as great, i.e., $35,836 \mathrm{~m} / \mathrm{sec}$; but from 32 to 56 days would then be required for the approach and slowing down for landing.

The "Controlled Pattern" System - eliminales "VenetianBlind effect" when caused by co-channel interference.
Two of the new TRIO yagis may be stacked to get up to
12'DB forkard gain

4701 Sheridan Rd., Dept. RC. Chicapo 40. III.

"-n press this for close-ups."

The Wonld's

Finest.

Finely decorated vase of blue
jasper ware, manufactured in 1785 by
Josiah Wedgwood; considered by many to be among the world's finest examples of the pottery-moker's art.

In pottery as in picture tubes, in art as in science, great names are born of great works. Today, as in the eighteenth century, Josiah Wedgwood is recognized as the producer of some of the world's finest pottery. Today too, men have come to know the name of Tel-O-Tube; a great name . . . born of a fine tube...the world's finest.

The GRE TEST Names In Television
PROTECT Their Names With Tel-O-Tube

Tel-O-Tube Dealers Everywhere
Wite for the one nearest you.

EAST PATERSON, NEW JERSEY

Sales Office: TEL-O-TUBE Sales Corporation, 580 Fifth Ave., New York 19, N. Y. Wedgwood vase courlesy Melropolitan Museum of Art.

New Devices

TV COMPONENTS
General Electric Co. Syracuse, N.Y.
TV receiver components in this new line include 70 -degree deflection yokes zontal sweep output and high-voltage

transformers, and other components such as EM-PM efc. These parts ore usable with G-E

SWEEP GENERATOR

Triplett Electrical Instrument Co Bluffton, Ohio
Model 3435 is a sweep generator with continuous range coverage to 240 mc intermediate frequencies in three bands. The main frequency diol is morked

with channels as well as frequencies The continuously variable, phase-con trolled sweep is effective from 500 kc to 12 mc . A stand by switch is provided made for connecting an external marker generator.
The instrument is constructed of cop per-plated steel throughout. Critical circuits are enclosed, and the power

V.T.V.M. KIT

 Allied Radio CorpChicago, Ill.
This new Knight v.t.v.m. kit has 30 ranges in all: d.c. volts $i n 0$ megohms (10 megohms input). 6 ranges; d.c

miliamperes, 4: ohms, b; db, 5: capaci tance, 6 ranges. It reads up to 5,000 range), ond to volts a.c. (hms . High. voltage ond r.f. probes are available. Tho instrument has a zero-center scale for FM discriminator alignment and a pilot light for on off indica
fion. A $41 / 2$-inch meter is used. and the $5 \times 6 \times 10$ inch steel case has a gray

TV WAVE TRAPS
JFD Mfg. Co.
Brooklyn, N.Y.
These wave trops installed by co necting the leads to the antenna in put terminals in parale with the in four models. No. BR106-10-30 trap omateur harmonics from the 14. and 28 me bands. No. BR106-80-110 traps FM image inferference. No. BRI06-30.61 FM image inferference. No. BR106-30.6J

60 mc , and No. BR $106-60.90$ trops

TV ANTENNAS

Telrex, Inc
Asbury Park. N.J
The new Monarch series of conical \forall beams offers standard units for all. for greater selectivity. The series will bi available in single., double. and fourbay models designated at K2X.TV. K4X TV and KBX-TV. All models are ovail able with either doweled, with heal: treated dural tubular elements or solid dural rods.

TV BOOSTER

Tel-A-Ray Enterprises, Inc. Henderson, Ky
This antenno-mounted booster is eas Iv aftached to any folded dipole. When used with a Tel-A.Roy model T an. tena, the unit provides a gain of up to 300 to provide better signal-to noise ratio for fringe reception

PANEL INSTRUMENTS
Simpson Electric Co. Chicago, III. Three new panel instruments models 1029. 1027 ond 1127) come in $41 / 2,31 / 2$ and $21 / 2$-inch sizes. The large scales
are easy to read, and the etched faces of these meters extend across the en. tipe front and are protected with un breakable plostic. Vertical chrome plated strips are recessed into the lastic. fluted cover.

NFW| The Radio \& Television Library Set Containing

 The BASIC KNOWLEDGE, TECHNIQUES \& DATA of RADIO TELEVISION ELECTRONICS LEARN...PLAN...DO
everything in Radio, television and electronics with this famous Library Set containing two practical, thorough handbooks: "The RADIO \& ELECTRONICS HANDBOOK", acond edition, with complete data sections included; and Television's manual,-'The VIDEO HANDBOOK". Both books mounted in a handsome slip case. Covers the fundamentals, theory, complete technique and on the job know-how with all data of radio, television \& dectronics. Learn complete ground work; latest developments; how to plan, construct, install, test, troubleshoot, trice, align, engineer the most modern equipment in all three fields.
Entire set was written with instruction and reference for :lll levels by the same BOYCE-ROCHE staff of experts who write and illustrate electronic manuals for the Signal Corps. Over 25,000 sets are approved and used by leading trade schools, companies, government agencies, shops, technicians and amateurs.
You may SAVE ONE DOLI.AR by sending your order in now for the set, including "RADIO \& ELECTRONICS HANDBOOK" and "VIDEO HANDBOOK" in handsome slip case for only $\$ 10.90$. (The two books alone regularly cost $\$ 11.90$.)
Send your order with or without money, but send it today, while the offer lasss!

Improved, Enlarged Second Edition The RADIO \& ELECTRONICS HANDBOOK

18 Sections, over 1000 illustrations Fundamentals of radio and electronics, vacuum transmission lines, meters, test equipment, testtube theory, resistors, capacitors, transformers, chokes, switches, basic circuits, vacuum tubes, rectifiers, amplifiers, oscillators, detectors, converters, filters: AM, FM, television, sound sysing, measuring, aligning, codes, charts, graphs, nomographs, formulas, standards, receiving tubes, transmitting tubes, rectifier tubes, cathode raty tubes, regulator tubes, AND MORE. rems, recording, power supplies, antennas,

Send for RADIO \& ELECTRONICS HANDBOOK TODAY! $\$ 5.95$
ON APPROVAL if you wish.

Television ... Complete!

The VIDEO HANDBOOK

Everything in television
in one handy volume
14 sections-over 800 patterns, pictures, drawings, schematics and charts.
Teaches television and provides complete condensed handbook reference on all phases. Makeup of television signal, how receiver accepts and passes signal, how picture is developed, how transmitter works, how to operate a television station, how to produce a show, camera and control room techniques, color problems, etc. Antenna selection, installation techniques. How to eliminate ghosts, interference, and noise. How to build up the signal. Pattern pictures for adjustment, positioning, width and height controls, focusing problems and many common faults peculiar to modern sets, AND MORE.
SEND for VIDEO HANDBOOK TODAY
ON APPROVAL if you wish. $\$ 5.95$

BOYCE-ROCHE BOOK CO. Dept. 41

Caldwell, New Jersey

Please send me () The Radio \&o Electronics Handbook, price $\$ 5.95$; or (The Video Handbook, price $\$ 5.95$; irated, price only $\$ 10.90$ on this special ofter. (Save $\$ 1.00$) Send me book (s) I have checked, for 10 -day $\$ 1.00$) proval reading. In 10 days I will remit full price(s) plus postage or return book(s) postpaid.
GOOD ONLY WHILE SPECIAL OFFER LASTS
NAME
ADDRESS
CITY
ZONE
..STATE
SAVE POSTAGE! We pay postage if you enclose full price(s) now. Money back on same return privilege. Amount of money order or check enclosed $\$$. BOYCE-ROCHE BOOK CO. CALDWELL, N. J.

BUILD 15 RADIOS AT HOME

With the New Improved 1951 Progressive Radio "EDU-KIT"

> ONLY
> $\$ 19 \underline{95}$

- free tools with kit
- ABSOLUTELY NO KNOWL EDGE OF RADIO NECESSABY
- NO additional parts NEEDED
- EXCELLENT BACKGROUND FOR TELEVISION
- 10 DAY MONEY-BACK GUARANTEE

WHAT THE PROGRESSIVE RADIO 'EDU-KIT' OFFERS YOU

The Progressive Radio "Edu-Kit" offers you a home study course at rock bottom price. Our Kit is designed to train Radio Technicians. with the hasic facts of Radio Theory and Construction Practice expressed simuly and clearly. You will
gain a knowledge of basic Radio Principles involved ill Radio Recention. Radio gain a knowledge of basic Radio Principles
Transmission and Audio Anplitication
You will learn how to idetify Radio Symhols and Diagrams: how to build radios, using regular radio circuit schematics: how to mount various radio uarts, how to wire and solder in a brofessional manner. You will learin how to operate
Receivers. Transmitters, and Audio Andplifiers. You will learn how to service and Receivers. Transmitters, and Audio Annplifiers. You will learn how to service and
trouble-shoot radios. In briet. you will receive a basic education in Radio exactly trouble-shoot radios. In bitiof, your to receive in a Radio course costing several humdreds of dollars.

THE KIT FOR EVERYONE
The Prodressive Radio Edu-kit, was specifically brepared for any person who has a basic knowledge of the English language, and has the desire to learn Radio. The Kit has been used successfully by young and old in all parts of the world. It is not necessary that you have even the shontest hackgromid in science
or radio.
The Progressive Radio "Edu-Kit", is used by many Radio Schools and Clubs
this country and abroad. It is used liy the Veterans Administration for Vocafional Guidance and Training, 'Edu-Kit', requires no instructor All instruction aro included All warts are individually boxed and identified by name, photigraph and diagrami. Every sten involved in building these sets is carefully explailled. you cannot make a mistake.

PROGRESSIVE TEACHING METHOD

The Progressive Radio "Edu-Kit'" comes complete with instructions. These instructions are arranged in a clear. simple and urogressive manner. The theory
of Radio Transnission. Radio Reception and Audio Amplification is clearly ex plained. Every part is identified by photograph and diagram: youl will learll the function and theory of every Bart used.
The Progresslve Radio "Edu-Kit,

The Progresslve Radio "Edu-Kit" uses the princinte of "Learn By Doing". Therefore you will build radios to illustrate the urincinles which you learn. These
radios are designed in a modern manner, according to the best princibles of present-day educational practice. You begin by building a simule radio. The next set that you build is slightly more advanced. Gradually, in a progressive manner you will find yourself constructing still more advanced radio sets. and doing work like professional Radio Technician. Altoqether
including Receivers. Amplifiers and Transmitters

The Progressive Radio "EDU-KIT" Is Complete You will receive every part necessary to build 15 different radio sets. This
includes tubes, tube sockets, variatile condensers, electrolytic condensers, nica con densers. paver condensers, resistors, tio strips, coil, tulsing, hardware, etc. Ever part that you need is included. In adilition
so that you can easily identify every item.

TROUBLE-SHOOTING LESSONS

Frouble-shooting and servicing lessons are inclucted. You will be taught to recognize and reluair troubles. While you are learning in this practical way, you will be able to do many a rellair job or your neighnors and friends. and charge fees which will tar exceed the cost of
learn radio and have nthers bay for

FREE EXTRAS IN 1951

- electrical and radio tester
- ELECTRIC SOLDERING IRON
- BOOK ON TELEVISION
- RADIO TROUBLE SHOOTING GUIDE
- MEMBERSHIP IN RADIO TELEVISION CLUB
- CONSULTATION SERVICE

QUIZ2ES
The Progressive Radio "Edu-Kit" is sold with a 10 -day money-back guarantee. Order your Progressive Radio "EDU.KIT" Today, or send for further information.

VOLTAGE REGULATOR
Clarostat Mfg. Co
Dover, N.H
Designed to reduce line voltage flue Designed to reduce ine voltage this tuations, tor better and fictures, tison connections at either end. It plugs in between the TV set's line plug and the outlet. Two madels are available: TV. A rated at 300 watts; and TV-B, rated at 375 watts.

AUXILIARY AUTO AERIAL

Insuline Corp. of Americo Long Island City, N.Y.
Tele-Con is a miniature double-coni after a TV antenna. Its four $10 / 2$-inch

arms are made of chrome-plated brass ubing and are set in red plastic cener pieces. The assembly clamps to ly installed. This is an eye-catching

MULTI-SECTION ELECTROLYTICS

Aerovox Corp
New Bedford, Mass
Having a special internal construc-
on which provides low r.f. mpedance

High score

 every time with
"Safe Centers!"

and minimum the type AFH multi-section elec trolytic capacitors are said to pro duce less hum and hash. Especiall suited for television, these capacitors are ovailable in a large selection of capacitance and voltage combinations for a variety of uses.

CORNER ANTENNA

Technical Appliance Corp. Sherburne, N.Y.
Designated as the 1700 series. new twin-driven corner antenna, has narrow directivity, a high front-to-bac ratio, and controlied phase relationshi of both high- and low-band obes. The menna has law wind
The Technical Appliance Co. alsa announces Engineering Bulletin No. 6 free to service technicians, which con tains actual measurements of db gai over half-wave dipoles tor all popular antenna types. This information is val able for selecting the best antenna

MULTIPLE POWER OUTLET
Sun Radio \& Electronics Co. New York, N.Y.
To eliminate makeshift outlets labs, shops, homes, and otices, thit standard line cord sockets from one standard line cord socketral outiet. The box contains two electrical outien. he orex to prevent overloads, a d.p.d. f tuses to preven over oads, oll eight
switch to turn off both legs of all receptacies, and a neon bulb to indi cate power flow through the switch. A the box to the electrical outlet.

RECORD CHANGER

 SPINDLEV-M Corp.
Benton Harbor, Mich.
A U.S. patent has been granted he Tri-O-Matic record changer spindle. This spindle does not drop, but lowers the records to the spindle shelt. The rec ords are then
n Basketball there' no better assurance of istory than a lengthy lad jumping center and there is nothing that scores higher in radio, V and other electronic circuits than SELEIRON miniature rectifiert with "Safe Center" plates.

When you specify SELETRON Selenium Rectifiers you eliminate arc-over danger, short circuits and heating at the center applied in mounting the rectifier cannot offect its performance - a SELETRON feature accomplished by deactivating the area of the plate under the contact washer.

The millions of SELETRON Selenium Rectifiers in satisfactory service as original equipment in the producis of leading manufacturers are millions of roasons why you can spacify SELETRON and be safs!
Look for Howord W. Sam's Red Book Supplement listing SELETRON replacements Bulletin write for Bulletin No. RS-30

- SSeletront-

ปภルЛЛЛ
 PRECISION PARTS

Wherever required, the finest quality [\% ceramic resistors are supplied. These require no aging and do not shift. No matching of common resistors is requires. You find in Heath lit the same quality voltage divider resistors as in the most expensive equipment.
The transformers are designed especially for the Heathkit unit. The scope transformer has two electrostatic shields to prevent interaction of AC fields.
These transformers are built by several of the finest transformer companies in the United States.

Used by leading MANUFACTURERS

Leading TV and radio manufacturers use hundreds of Heathkiss on the assembly lines. Heathkit scopes are used in the alignment of TV tuners. Impedance bridges are serving every day in the manufacture of transformers. Hearhkit VTVM's are built into the production lines and test benches. Many manufac. curers assemble heatikits in quantity for their own use thus keeping purchase cost down

Complete

INSTRUCTION

 MANUALSHeathkit instruction manuals contain complete assembly data arranged in a step-by-step manner. There are pictrials of each phase of the assembly drawn by competent artists with detail
allowing the actual identification of parts. Where necessary. a separate section is devoted to the use of the instrument. Actual photos are in. clouded to aid in the proper location of wiring.

Weed by leading UNIVERSITIES Heathkits are found in every leading university' from Massachusetts to California. Students learn much more when they actually assemble the instrument they use. Technical schools often inclaude Hearhkits in their course and these become the property of the stu-
 dents. High schools, too, find that the purchase of inexpensive Heathkits allows their budget to go much further and provides much more complete laboratories.

YOU SAVE BY ORDERING DIRECT FROM MANUFACTURER -USE ORDER BLANK ON LAST PAGE

NEw rots city (ib)

BENTON HARBOR 20,
MICHIGAN

YOU SAVE BY ORDERING DIRECT FROM MAMUFACTURER-USE ORDER BLANK ON LAST PAGE s.

OCZE INTERMATHOMAL COR
NEW YORK CIIT (16).
Challi Alles N. V .

Hewe 1951 •• MODEL V-4A Preathbert VTVM KIT
 HAS EVERY EXPENSIVE

* Higher AC input impedance, (greater than 1 megohm at 1000 cycles)
\star New AC voltmeter flat within 1 db 20 cycles to 2 megacycles $(600$ ohm source).
\star New accessory probe (extra) extends DC range to 30,000 Volts.
* New high quality Simpson 200 microampere meter
\star New $1 / 2 \%$ voltage divider resistors (finest available).
$\star 24$ Complete ranges.
* Low voltage range 3 Volts full scale ($1 / 3$ of scale per volt).
* Crystal probe (extra) extends RF range to 250 megacycles.
* Modern push-pull electronic voltmeter on both AC and DC.
* Completely transformer operated isolated from line for safety.
\star Largest scale available on streamline $4 \frac{1}{2}$ inch meter.
\star Burn-out proof meter circuit.
\# Isolated probe for dynamic testing no circuit loading.
\star New simplified switches for easy assembly.

new LOW PRICE $\$ 550$

The new Heathkit Model V-4A VTVM kit measures to 30.000 Volts DC and 250 megacycles with accessury probes - think of it, all in one electronic instrument more useful than ever before. The $A C$ volemeter is so flat and extended in its response it eliminates the need for separate expensive AC VTVMis. + or - db from 20 cycles to 2 megacycles. Meter has decibel ranges for direct reading. New zero eenter on meter scale for quick IM alignment.
There are six complete ranges for each function. Four functions give total of 24 ranges. The 3 Volt range allows $331 / 2$ of the scale for reading one vole as against only 20% of the scale on 5 Volt types.
The ranges decade for quick reading.
New 1 ef ceramic precision are the most accurate commercial tesistors available - you find the same make and quality in the finest laboratory equipment selling for thousands of dollars. The entire voltage divider decade uses these $1 / 2$ fód resistors
Now 200 microampere $41 / 2^{\prime \prime}$ streamline meter with Simpson quality movement. Five times as sensitive as commonly used 1 MA meters.
Shatterproof plastic meter face for maximum protection. Both AC and DC voltmeter use push-pull clectronic voltmeter circuit with burn-out proof meter circuit.
Electronic ohmmeter circuit measures resistance over the amazing fange of $1 / 10 \mathrm{ohm}$ to one billion ohms all with internal 3 Volt battery. Ohmmeter batteries mount on the chassis in snap-in mounting for casy replacement.
Voltage ranges are full scale 3 Volts, 10 Volts. 30 Volts, 100 Volts, 300 Volts, 1000 Volts. Complete decading coverage without gaps.
The DC probe is isolated for dynamic measurements. Negligible circuit loading. Gets the accurate reading without disturbing the operation of the instrument under test. Kit comes complete, cabiner, transformer. Simpson meter, test leads. complete assembly and instruction manual. Compare it with all others and you will buy a Heathkit. Model V-4A. Shipping Wt., 8 lbs. Note new low price, $\$ 23.50$
 The HIEATTE CONDPANY BENTON HARBOR 2O, MICHICAN

,here Signal generator kit

Features

- Transformer operated for safety.
- Sine wave audio modulation
- Extended range 160 Kc . to 50 megacycles fundamentals.
- New step attenuator output.
- New miniature HF tubes.
- Transformer operated for safety.
- New external modulation switch
- 5 to 1 vernier tuning for accurate settings.

A completely new Heathkit Signal Generator Kit. Dozens of improvements. The range on marker oscillator for $T V$. Newer to over 50 megacycles; makes this licathkit ideal as a marker oscillator for I. Now step attenuator gives controlled outputs from very low values to high output. A continuously variable control is used with each step. New miniature

Uses 6C4 master oscillator and 6C4 sine wave aud
operated and a husky selenium rectifier is used wave audio oscillator. The set is transformer wound and checked for calibration New sine wave audio oscillator provides internal modulation and is a for all hands. external audio resting. Switch provided allows the oscillator to be modulated by an external audio oscillator for fidelity testing of receivers.

A best buy - think of all the features for less than $\$ 20.00$. The entire coil and tuning assembly are assembled on a separate turret for quick assembly - comes complete - all tubes - cabinet - test fun to build a Heathkir Model SG. 6 Signal Generator. Shipping Wt., 7 lbs.

SINE AND SQUARE WAVE AUDIO GENERATOR KIT Either sine or square wave. Either sine oridge circuit. Stable RC bridge 20,000 cycles. Less than 1% distortion.
Hundreds of Heathkit Audio Generators are used by speaker nasality
turers-definite proof of their quality and dependability. The added feature of square wave opens up an entirely new field of amplifier testindenser, 1% best of parts, 4 gan, metal cased filter calibrating resistor, completely calibrated panel and detailed instruction condensers, 5 tubes, co best and most useful kits. Model
manual. One of our bes

$\$ 1950$
THE NEW Freathect
HANDITESTER

Preathat RECEIVER \& TUNER KIIS for AM and EM

TWO HIGH QUALITY Feathkit SUPERHETERODYNE RECEIVER KITS

Model BR. 1 Broad cast Model Kit coy ers 550 to 1600 Kc
Shipping W'r., 10 pounds.
\$195.0

Model AR-1 3 Band Receiver Kit covers 550 Kc . to over 20 Mc. Continuous. Ex-
tremely high sensitivity. Shipping W_{t}. ${ }^{\text {s } 2350}$

7 wo new Heathkirs. Ideal for schools, replacement of worn out receivers, amateurs and custom ibstallations. Borl, are transformer dial - quality power and output transformers - dual iron core shielded 1.f coils-metal filter condensers and all other parts. The chassis has phono input jack - 110 Volt Outlet for phono motor and there is a phono-radio switch on panel. A large meral panel simplifying installation in used console cabinets is included. Comes complete with rubes and instruction manual incorporating pictorials and step-by-step instructions (less speaker and cabinet). The three band model has simple coil turret which is assembled scparately for ease of construction

TRUE FM FROM Zeathkit FM TUNER KIT $\$ 2250$

The Heathkit FM Tuner signed for best possible
tonal reproduction. The circuit incorporates the most desirable FM features - truc FM - ready wound and adiusted coils - 3 stages of 10.7 Mc I.F. (including limiter)

Tube lineup: 7E5 oscillator, 6SH7 mixer, two 6SH7 IF stages, 6SH7 limiter, two 7C4 diodes as discriminator, 6 XS rectifier.
The instrument is transformer operated making it safe for connection to any type receiver or amplifier. The R Γ. coils are ready wound mounted on the tuning condenser and the con-
denser is adjusted - no R F. coils to wind or denser
A calibrated six inch slide rule dial has vernier A calmated six inch slide rule dial has vernier
drive for easy tuning. The finest parts are provided with ail tubes, punched and formed chassis, trans formers, condensers and complete instruction manual. Model FM-2. Shipping W't., 10 lbs .

ENJor muSIC AT ITS Zenest wITH Readhet AMPMFRFRS

NEW \#reathit

Features

- Push-pull 6L6's.
- Full 20 Watts output - Fully enclosed chassis.
- Provisions for reluctance pickup compensation stage
- Cosed high fidelity output transformer
* - Cased high fidelity output transform

53 Full range of output impedances 3.2 ohms to 500 ohms.
The finest amplifier kit we have ever offered - check the features. 'This incenensive amplifier compares favo ably with instruments costing five times as much. Nothine has becn spared or provide the best reproduction -an deal amplier for the new Heationt FM I uner listed beiow
Dual tone controls for control of both treble and bass. Bass control is of the boost iype for maximum listenng pleasure. Optional preampliter stage for use with G.E. remuctance pichup or microphone. Uses inverse feedback to give excellent response over cntire range, Tube lineup: GSJ7 preamplifier stage, 6J5 phase splitter stage, two 6L6's in push-pull and SY'3 rectifier. (6 SC 7 as optional compensation stage

Uses highest quality Chicago Transformer Corporation cased outpur transformer with taps of $3,2,8,15,60$ and 500 ohms to match any speaker combination. power transformer is conservatively rated for continuous operation in sound systems Tone control gives maximum bass hoost of 6 db at 70 cycles. Amplifier has maxi-
 Model A. 5 A Ame with an parts, rubes and instruction manual. 12" 20 Watt Speaker, No. 326 . 26 lifier for G. E. cartridges or microphone $\$ 23.50$

\#eathkit RECEIVERS and TUNER CABINETS

Blonde birch veneer cabinet for cither the receivers or tuner. Modern styling is an asser to any room. $5^{\prime \prime}$ " speaker fits in end of cabinet when used with reOrder 3 is Order No. 345 for either recceiver
Metal professional eype communications receiver cabinet. Finished in decp grey to fit the panel supplied with Heathkit BR-1 and AR. 1 Receivers (ancl shown not included with cabinet). 5 " speaker mounts in end of cabinet. Gives profes. sional appcarance to Heathkit receivers. Size $7 \times 14 \times 73 / 4$ inches. Sluipping Wt. 6 lbs.
5" Permoflux Speaker for cither cabinet for use with either Heathkit Receiver

Order No. 350 for FM tuner No. 320 s" $^{\prime \prime}$ Speaker..

This new Heallikit Amp
reproduction at a Amplificr was complete reier stage and pust price. Has two to give quality ohm voice coil) tubes, qualiey outm power preamp stages, orher parts Has hont husky cased powet transformer (to 3 es Has pictorial for tonc and volume coner transformer (to 3 . that $\pm 11 / 2$ do froms assembly. Six watt. Inseruction mand alt kit at new low prom 50 to 15,000 wats output with mannal Wt., 7 lbs. andill A-4. Shipping

Fundamentals of Radio Servicing

IPrry NXIII-Nignals in Nposer

By JOHN T. FRYE

|N THE last chapter we wrote as though the transmitted radio wave traveled a simple, straightforward path from transmitting antenna to the various receiving antennas. That is not the case! Nothing about this wacky radio business could ever be that simple, direct, and easy to understand!
Fig. 1 shows what really happens. Some of the waves from the transmitter at A travel along the surface of the earth like the one designated G. These

Fig. 1-How radio wates act in space.
"ground waves" induce currents in the carth immediately beneath them, and the resistance of the earth to the passage of these currents cause them to die out rapidly, particularly at the higher frequencies. On the broadcast band these ground-hugging waves account for practically all the daytime reception. They are good for about 50 miles at the high-frequency end of the band and up to 200 miles at the lowfrequency end.

Then there are the "sky waves" that travel upward from the transmitter at various angles as shown at S1, S2, and S3. Some of these waves, like the one at S1, imitate the famed traveling salesman and keep riyht on traveling, never to be heard from again. Others, like S2 and S3, meet a "something" up there in the wild blue yonder that persuades them to turn around and come back to earth.

The components for an a.v.c. circuit.

The "something" that turns them back is a series of ionized layer: above the earth's surface at various distances of from 30 to 250 miles. You will recall that an ion is really a positively charged molecule that got that way from having lost some of its negative charge in a collision with a fast-moving electron or through some other molecular mayhem. The gases in the upper reaches of the earth's atmosphere are being constantly bombarded by ultraviolet and cosmic ray radiation, and this bombardment ionizes many of their molecules. Since these gases hover at various heights according to their weight, and since the bombardment is more effective as the atmosphere becomes rarer, it is not surprising that the ionization is in layers, each layer heing more intensely ionized than the one below it.

Did you ever see a stick lying half in and half out of a pool of clear water and notice that the stick seemed to be sharply bent right at the point where it enters the water? We learned in

Fig. 2-Wave path in an ionized layer.
high school physics, of course, that it was not the stick but the light rays reflected from it that were bent.

Just as a light ray changes course when it passes from one medium to another, so are radio waves bent when they pass through an intensely ionized layer: The wave behaves as thongh it hated ions and wants to avoid any concentration of them. This is shown in Fig. 2. Notice that as the radio wave enters the ionized layer from below, it tries to shy away from the more deeply ionized center portion of the layer; but once it is forced to pass through this center portion, it reverses its direction of curvature so as to escape from the layer as soon as possible.

The actual amount of bending depends upon three things: the angle with which the radio wave strikes the layer, the frequency of the wave, and the intensity of ionization of the layer.

If the wave strikes the layer nearly at right angles, as shown at A in Fig. 3, there is very little bending. As this angle decreases, the bending becomes more pronounced, as illustrated at C and D. A low-frequency wave bends or "refracts" much more than one of higher frequency. If a wave of a given frequency strikes the layer at angle that just permits it to he bent back to earth, one of a little higher frequency will pass on through the layer. Often a wave will penetrate a lower layer only to be turned back by the increased ionization of the layer above it, as pictured at B.

The whole subject of what happens to a radio wave in the ionosphere is a most interesting and complicated one, but we do not need an exhaustive explanation of the various phases of that esoteric matter. For our purposes we need know only that sky waves can he bent back to the earth in the ionosphere; that most hroadcast-frequency sky waves are absorbed in this region during the day time but are returned to earth at night; and that the exact spot to which a wave returns depends upon several highly variable factors.

And now we are ready to take up fuding. As the curtain rises on this drama, we see two portions of the same radio wave perched on the transmitting antenna just prior to taking off. The ground wave is saying to the sky wave, "You take the high road and I'll take the low road, and I'll be there before you." It is this choice of paths by which the signal can go from the transmitter to the recciving location that causes the trouhle.

If the receiver is near the trans-

Fig. 3-The amount of bending depends on the angle at which the wave strikes.

mitter, reception is dominated by the powerful ground wave and is not affected by any sky waves that may or may not be returned from the ionosphere. As the distances from the transmitter increases, the ground wave grows weaker and weaker until finally it cannot be heard at all. At this point and beyond, the station cannot be received in the daytime. At night the waves "reflected" from the ionized layers permit signals to be received.
At a point where the sky wave and the ground wave are received about equally well, we have an area or belt of very bad "fading." or Huctuation in the intensity of the received signal. Since the two portions of the same signal arrive over different paths and cover different distances, they may arrive with a difference in timing or "phasing" that will cause their two separate intensities either to be added together or to buck one another. In the first case, the resulting signal will be

Fig. 4-A detector circuit with a.v.c.
stronger than the one from the ground wave alone; in the latter the two portions may so effectively cancel one another that nothing can be heard. Furthermore, since the path the sky wave travels is constantly changing with shifts in the height and ionization of the refracting layer, the signal intensity may vary constantly between these two extremes.

You might think that once the receiving station was beyond the reach of the ground wave, fading would be at an end, but such is not always the case. You have to remenber that the wavebending ionosphere is as unstable as a bucket of smoke and the path pursued by a radio wave through this ionosphere is constantly changing. At one time the receiver may be getting the full intensity of the refracted wave, while a few minutes later this center of intensity may have shifted to a spot several hundred miles away, and the receiver will be sitting in the weak fringe of the earth-returning wave.

What is even worse, the sideband frequencies of the wave may travel different paths in the ionosphere because of their slightly different frequency, and when they arrive at the receiver the phase of these intelligencecarrying sidebands may be altogether different from what they were at the transmitter. As a result, the music or voice may be very badly garbled by the interaction of these out-of-phase sidebands. This very annoying brand of (Continued on page 100)

NEW INICCAROR IOUTRAP

THE RAULAND CORPORATION

Perfection Through Research a 245 n. knoxavenue. chicago 41, ilunols

This "AUTOM ATIC TEACHER" shows HOW TO REPAIR OVER 4800 RADIO MODELS

. . . without expensive test equipment

Ghirardis big manual-size. 744-page RADIO TROUBLE-SHOOTER'S HANDBOOK is a dependable guide to locating and repairing the common troubles in the most widely used radios, auto radios and radio-phonograph combinations. Whether you repalr radios for a living ol work with them occasionally, this book will save you time and money on thousands of jobs-
especially on older sets where data is often lacking. Eliminates useless testing! especially on older sets where data is often lacking. Eliminates useless testing! SAVES TIME-HEIPS YOU MAKE MORE MONEY:
Just look up the case history notes on the old radio you want to fix. RADIO TROUBLESHOOTER'S HANDBOOK tells what the trouble is-what causes it -and exactly how to repair it, often in half the usual time. Hundreds of additional pages contain valuable data on tubes, parts and equipment plus graphs diagrams and money-making service hints. Ideal for training new service help ers. Worth another man in the average shop! Price only $\$ 5$ ($\$ 5.50$ outside
U.S.A.). Order Book No. 2 in coupon 10 -day money-back guarantee.
MONEY Make your servicing library really complete! Get BOTH SAVING Ghirardi's RADIO TROUBLESHOOTER'S HANDBOOK (Book No. Price of only $\$ 9.50$ for the two. ($\$ 10.50$ outside U.S.A.) Use OFFER! coupon today

IT PAYS TO KNOW HOW TO USE THE

 OSCILLOSCOPE fully!Learn to use the oscilloscope fully on service and laboratory jobs-and Watch your efficiency and earnings soar! MODERN OSCILLOSCOPES to earth in explaining oscilloscopes and showing exactly how and where to apply them on AM-FM and TV jobs. Then. in easily understood terms. rou learn all of the tricks of using this handy instrument-from locating romplete chapter sections deal with television and AM and FM servicing and show how the oscilloscope can solve many of your toughest problems.

CHOCK FULL OF HOW-TO-USE-IT DATA

Each oscilloscope operation is carefully explained including the making of connections, adjustment of circuit components. setting controls and photos make things doubly clear. Price $\$ 6$ ($\$ 6.50$ outside U.S.A.). Order Book No. 4 in coupon. Read it for 10 days at our risk

What it is! How it works! Exactly how to use it on
the iob!

TO HELP YOU INCREASE YOUR MONEY-EARNING POWER!!

Train for better pay in TELEVISION
SERVICING TELEVISION
SERVICING

This great book makes T'/ servicing easy to learn
Here-written by a leading a'ito radio ex pert-is exerything needed to help the beginkkill in this fascinating field. SERVICING THE MODERN CAR RADIO describes installation. testing and repair methods fully. Also, it gives needed special data on car radio circuits, differences between car and home radio servicing problems, shop set-up and
business getting methods. Covers antenna inousiness getting methods. Covers antenna installations: loudspeaker servicing, input circuits; power supplies; car radio alignment: circuit featnres: auto electrical systems; set maintenance and dozens of other subjects. In

There are more auto
radios in use than
wer before. Be the who can repair them!
addition, there are 500 actual car radio cir-
cuit diagrams that are worth the entire price of the book to the busy service shop! 702
manulal-size pages. Price $\$ 7.50$ ($\$ 8.00$ outside U.S.A.l. 10-Day money-back guarantee. Or-

Here, in one handy, 334-page volume is a complete guide to installing and servicing television receivers. PRACTICAL TELEVISION SERVICING tells you what to do-
how to do it-how to set up shop-what how to do it-how to set up shop-what mistakes to avoid. Clearly explained are the
differences between radio and TV work. In-
 helps you cluded are dozens of actual TV service case listories and explanations of wiring, repair and component reslacoment tech niques, antenna erection, $T V$ installations, etc. Also, you get dozens of helpful tips on testing. inmproving picture linearity data. In a way you can easily undersind other vital TV service exactly how to do the work. Price only $\$ 400$ it slinows step by step Our 10-day money-back guarantee protects you absolutely. Ordel Book No. 8 in coupon.

\square wITh your PURCHASE OF two sooks
 OR MORE

Here's an offer you can't afford to miss! With your purchase of ANY TWO of the eight books shown on these pages, we Will GIVE you one of the following famous MHB Manuals in Applied Electricity. Your purchase of four regular books en-
titles you to two of the Manuals-AT NOT ONE Citles you to two of the Manuals-AT NOT ONE of gift books on coupon.
Manual A-INDUSTRIAL ELECTRIC WIRING
Construction, operation and mimenance data on a-c and d-c systems. 336 pages. over 100 illus |Regular price $\$ 2.75$)
Manual B_PRIMARY AND STORAGE BATTERIES Data on selection, mantenance and use-plu trols. 168 pages profusely ilnstrated. 1Regula price $\$ 2.25$ ।
Manual C-ELECTRICALMEASURINGINSTRUMENTS
Operating principles and details of all industrial use. 284 pages. over 200 illus. Reaular price $\$ 250$,

10-DAY M BAEF

FM is a mighty important part of radioinits and high-fidelity in Television, mobile more so every dienty reception-is becom.ng expert, this book FREQUENCY MODULATION makes it easy for you to understand FM funda mentals and equipment clearly. Equally im portant. it explains how to handle FM service Basic FM theory. circuits, transmitters, re
ceivers and mobile FM are discused easily understood manner-with special em phasis on modern methods of installing. ad justing and repairing FM receivers. Other sub jects include FM circuit peculiarities; tuning alignment; general servicing procedure and many others. A complete guide to one of elec tronic's fastest-growing yet least understood developments! 448 pages. over 300 illustrations Price $\$ 5$ ($\$ 5.50$ outside U.S.A.I Order Book
No. in coupon

Frequency Modulation theory and service procedure clearly explained

AT OUR RISK!

${ }^{\text {rss }}$ NEW! ${ }^{T s} \wedge$ A NATIONAL!

$\$ 4995$
SW-54

the most compact

 general coveragereceiver
ever built:

- 540kc - 30mc
- VOICE
- MUSIC
- CODE

Designed especially for the shortwave fan, the new SW-54 covers ship, police, amateur, foreign and standard broadcast bands. Yet it's housed in a smart, modern, unbreakable metal cabinet that measures only $11^{\prime \prime} \times 7^{\prime \prime} \times 7^{\prime \prime}$. Uses new miniature tubes in superheterodyne circuit, for astonishing sensitivity. Unique adjustable plastic bandspread dial assures logging accuracy over entire range. AC/DC operation. Write for details and name of nearest supplier.

fading accompanied by distortion is called "selective facling."

Night radio reception in the old days used to be a pretty exasperating affair. The operator had to ride the controls constantly to prevent the received signal from blasting the speaker one minute or fading clear out the next.

The cure, once found, was simple. Automatic uolume control was the very poor name selected for it. I say "poor" because it is evident that any attempt to hold the volume at a constant levelmaking the whisper of the flute as loud as the bellow of the tuba-would result in distortion. What really was done was to make the r.f. sensitivity of the receiver inversely proportional to the intensity of the signal. As the signal intensity goes up, the receiver sensitivity goes down, and vice versa. The end result is that the signal delivered to the detector is practically independent of variations in the strength of the received signal.

This control is secured by varying the bias voltage applied to the r.f., mixer, and i.f. stages. As the negative bias on the grids of these tuhes is increased, their ability to amplify is decreased, and the sensitivity of the receiver is reduced. Since we want this bias voltage to rise and fall with the strength of the received signal, the best place to get such a control voltage is from the signal itself.

Fig. 4 shows how this is done. The portion of the diagram inside the dotted lines is that of the diode detector shown and discussed in the chapter on

Fig. :-A basic delayed a.s.c. circuit.
detector action (August, 1950, RadioElectronics). You will recall that the rectifying action of the diode causes three different types of current to flow downward through L1: first, the pulses of rectified r.f. carrier that were filtered out by the combination of R1, C1, and C2; second, the audio fluctuations that appear across R2; and third, the d.c. voltage produced by the one-way movement of electrons through R2 to ground. This last voltage is the one we are interested in.

The d.c. voltage drop across R 2 is produced by rectifying the carrier envelope; so it stands to reason that it will be directly proportional to the amplitude of the carrier. If this amplitude increases, point A will become more negative with respect to ground; if it decreases-which is another way of saying the intensity of the signal groes down-point A becomes less negative.

Before this controlling voltage can be applied to the grids of our r.f. and i.f. tubes, however, we must comb out of i^{2}
the a.f. variations still present at point A. This is done by means of a resistorcapacitor filter R4-C3.

The values of this resistor and capacitor are carefully chosen and should not be changed. When a capacitor charges and discharges through a resistor, as happens here, the time required for the voltage to linild up and fall depends upon the values of the two components. The larger they are, the more time is required. What we want here is a combination that will be too slow to follow the voltage variations caused by the lowest audio frequency but fast enough to let the system have time to "recover" in the time required to tune from one station to anotler. Otherwise, when tuning from a strong station past a weak one, the sensitivity of the receiver might not have time to adjust itself upward after leaving the strong station, and the weak station would not be heard. The usual time constant is 0.1 second.

This negative voltage is fed to the various grids of the controlled tubes through isolating resistors that prevent coupling between the grid circuits. Tubes controlled loy a.v.c. are the "remote-cutoff" type, the ones whose amplifying properties respond smoothly to wide variations in bias voltage. These tubes also are provided with a certain amount of minimum fixed bias -such as cathode bias-so that the plate current does not becone excessive when no a.v.c. voltage is being produced.

In an ordinary a.v.c. system, the controlling action starts on even the weakest signal and begins to reduce the gain of the receiver when increased sensitivity would really be a help. "Iyelayed a.v.c.," as diagrammed in Fig. 5, shows the basic circuit for overcoming this problem. One diode D1 of a duo-diode is used for detection in the usual manner. The i.f. signal is also applied, through C1, to D2. The cathode of D2 is positive with respect to ground, which makes the plate negative with respect to the cathode. As long as the peak amplitude of the i.f. signal applied to D2 is less than this bias voltage, there will be no rectification. and constquently no a.v.c. voltage will be developed. As soon as the peak i.f. voltage rises abcve this bias voltage, rectification begins and the a.v.c. voltage is developed just as before. A battery is used for bias in the diagram, but the cathode may be tapped in at some point on a current-carrying resistor to get the correct bias.

Automatic volume control troubles are almost entirely due to failures of the capacitors, resistors, or diodes that make up a.v.c. circuits. Since the voltages are fed to the grids of the tubes through high-ohmage resistors, even a slightly leaky capacitor will shortcircuit the a.v.c. voltage.

A possibly worse trouble is en intermittently leaky capacitor, which will produce its own type of fading. Where the complaint is "fading" or "intermittent," it is often a good idea to replace all capacitors in the a.v.c. circuit and to replace or make sure the resistors are not changing their ohmag'e.

4 Pages of TEST EQUIPMENT at prices every serviceman can afford! MONEY

 BACK ?

 BACK ?
 Every single unit described on this and the

following pages is offered on a strict "money-back-if-not-satisfied-basis.' No if's-no but'sno maybe's. Simply send your order for any unit
or units you select and try them out for 10 days. If not completely satisfied-return for refund in full. No explanation necessary. You are sole judge.

GUARANTEE ?

Every instrument sold by us is covered by a one year guarantee.
Guarantee registration card is included with shipment.

KITS ?

We have discontinued advertising TEST EQUIPMENT in Kit form. The units offered on these 4 pages are completed instruments, NOT KITS! Every model is factory-wired, calibrated and ready to operate.

Important Note: The two models described below include slip-on portable hinged
covers. This is a very desirable feature in Tube Testers because the multiple switches
used on such units indicate properly only when clean. The slip-on covers insure long
life because the front panel, including all switches, is fully protected when the
instrument is not in actual use.
THE NEW MODEL 247

Check octals, loctals, banfam ir., peanuts, television miniatures, magic eye, hearing alds, thyrarrons, the new
type
H.F. miniatures,
efte.
Features:
A newly designed elemen selector switch reduces the possibility of obsolescence to an absolute minimum

* When checking Diode, Triode and Pentode sections of multi-purpose tubes, sections can be tested individually. A special isolating circuit allows each section to be tested as it it were in a separate envelope. * The Model 247 provides a supersensitive method of checking for shorts and leakages up
to 5 Megohms between any and all of the terminals. \star One of the most important improvements, we believe, is the fact that the 4 -position fast-action 5 nap s witches are all numbered in exact
accordance with the standard R.M.A. numbering system. Thus, if the element terminating in pin No. 7 of a tube is under test, button No. 7 is used for that test.

Model 247 comes complete with new speed-read chart. Comes housed in handsome hand-rubbed oak cabinet sloped for bench use. A slipon portable hinged cover is indicated for outside
Size: $10^{3 / 4^{\prime \prime}} \times 8^{3 / 4^{\prime \prime}} \times 5^{3 / 4^{\prime \prime}}$.

SUPERIOR'S NEW MODEL TV-10

Specifications: \star Tests all tubes including 4 5, 6, 7, Octal, Lock-in, Peanut. Bantam, Hearing-aid, Thyratron, Miniatures, Sub-Miniatures, Novals, etc. Will also
test Pilot Lights. tests by the \star fests by the well-established emission method for tube quality, directly read on the scale of the meter.
K Tests for "shorts" and 'Leak ages up to 5 Megohms. Lever Action Switches for individual element testing. Because all elements are numbered ac. cording to pin-number in the RMA base numbering system, the user can instantly identify which element is under test. Tubes having tapped filaments and tubes with filaments terminating in more than one pin are truly lested with the Model TV-10 as any of the pins may be placed in the neutral position when necessary..
The Model TV-IO does not use any combination type sackets. Instead individual sockets are used for each type of tube. Thus it is impossible to damage a tube by inserting it in the wrong socket.
provides complete data for all tubes - Newly designed Line Voltage Con. trol compensates for variation of any line voltage between 105 Yolts and 130 volts
The Model TV-10 operates on 105130 Volt 60 Cycles A.C. Comes housed in a beautiful hand-rubbed oak cabinet complete with portable cover.

BUY WITH CONFIDENCE!!

WE KNOW THE PRICE IS UNBELIEVABLY LOW,

but that's not all! In addition, this finely engineered instrument provides a degree of accuracy never before attained in a unit selling for even double this price. Furthermore-in designing this unit, we took advantage of every recent improvement in components. For example, by using slug-tuned coils, we are able to efficiently adjust each instrument for
perfect accuracy. This feature will also enable you to recalibrate the model 200 periodically without having to return it to the factory. The use of a Noval tube (the 12AU7) with its extremely low interelectrode capacity enabled us to reach a higher frequency range than was heretofore possible in a unit of this type.

THE NEW MODEL 200
 AM and FM

SIGMAL GENERRTOR

SPECIFICATIONS

* R.F. FREQUENCY RANGES: 100 Kilocycles to 150 Megacycles.
* MODULATING FREQUENCY: 400 Cy . cles. May be used for modulating the R. F. signal. Also available separately.
* ATTENUATION: The constant impedance at. tenuator is isolated from the oscillating circuit by the buffer
tube. Output impedance of this model is only 100 ohms. This low impedance reduces losses in the output cable.
* OSCILLATORY CIRCUIT: Hartley oscil-
lator with cathode follower buffer tube. Frequency stability is assured by modulating the buffer tube.
» ACCURACY: Use of high-Q permeability tuned coils adiusted against $1 / 10$ th of 1% standards assures an accuracy of 1% on all ranges from 100 Kilocycles to 10 Megacycles and an accuracy of 2% on the higher frequencies.

TUBES USED: $12 A \cup 1-$

One section is used as oscillator and the second is modulated cathode follower. T-2 is used as modulator. 6 C 4 is used as rectifier.

The Model 200 operates on 110 Volts A.C. Comes complete with output cable and operating instructions.

(i) NET

MONEY BACK GUARANTEE!!

Superior's new model 770

AN ACCURATE POCKET-SIZE VOLT-OHM MILLIAMMETER

(SENSITIVITY-1000 OHMS PER VOLT)

Superior's new model 670

SUPER-METER

A COMBINATION VOLT.OHM MILLIAMMETER PLUS CAPACITY REACTANCE INDUCTANCE AND DECIBEL MEASUREMENTS

SPECIFICATIONS:

D.C. VOLTS: 0 to $7.5 / 15 / 75 / 150 / 750 / 1,500 / 7,500$ Volts A.C. VOLTS: 0 to $15 / 30 / 150 / 300 / 1,500 / 3,000$ Volts OUTPUT VOLTS: 0 to $15 / 30 / 150 / 300 / 1,500 / 3,000$ Volts D.C. CURRENT: 0 to $1.5 / 15 / 150 \mathrm{Ma}$. 0 to 1.5 Amperes RESISTANCE: 0 to $500 / 100,000$ Ohms 0 to 10 Megohms CAPACITY: . 001 to .2 Mfd . 1 to 4 Mfd . (Quality test for electrolytics)
REACTANCE: 700 to 27,000 Ohms 13,000 Ohms to 3 Megohms
INDUCTANCE: 1.75 to 70 Henries 35 to 8,000 Henries DECIBELS: -10 to $+18+10$ to $+38+30$ to +58

ADDED FEATURE:

The Model 670 includes a special GOODBAD scale for checking the quality of electrolytic condensers at a test potential of 150 Volts.
The Model 670 comes
housed in a ruged
crockle-finished steel
cobinet complete with
test leads and operoting instructions. Size ofing instructions.
$51 / 2^{\prime \prime} \times 71 / 2^{\prime \prime} \times 3^{\prime \prime}$.

Sideterictiz SIGNAL TRACER

THE WELL KNOWN MODEL CA-12 IS THE ONLY SIGNAL TRACER IN THE LOW PRICE RANGE INCLUDING BOTH METER AND SPEAKER!!!

SPECIFICATIONS

* Comparative Intensity of the signal is read directly on the meter-quality of the signal is heard in the speaker.
* Simple to Operate-only one coneecting cable-no tuning controls.丸 Highly Sensitive-uses an improved vacuum-tube voltmeter circuit.
\star Tube and Resistor Capacity Network are built into the detector probe. \star Built-In High Gain Amplifier-Alnico V Speaker.
\star Completely Portable-weighs 8 pounds-measures $51 / 2^{\prime \prime} \times 61 / 2^{\prime \prime} \times 9^{\prime \prime}$.
Model CA-12 comes complete with all leads and operating instructions.....

(i) \quad N NET

Superior's new model TV-30

TELEVISION SIGNAL GENERATOR

ENABLES ALIGNMENT OF TELEVISION I F. AND FRONT ENDS WITHOUT THE USE OF AN OSCILLOSCOPE!

The Model TV-30 represents a radical departure in the design of Television Signol Generatars. Unlike the "sweep" type of Generator which requires the use of an Oscilloscope and extensive technical knowledge including pattern interpretation etc., the TV-30 is a self-contained unit which permits alignment of Television Receivers by the use of exactly the same methods enfployed in the past to align Broadcast and Short-Wave Receivers.

FEATURES

Built-in modulator may be used to motlulate the R. F. Frenuency also to localize the cause of trouble in the audio circults of T. V. Receivers.
Double shielding of oscillatory circuit assures stability and reduces radiation 10 absolute minimum. Provision made for externat modulation by A. F. or R. F. soures to urovide frequency modulation. All 1. F. frequencies and 2 to 13 channel frequencifs are calibrated direct in Megacycles on the Vernier dial Linear calibrations throughout are achieved by the use of a Straight Line Frequency Variable Condenser together with a permeability trimmed enil.
Stability assured by cathode follower buffer tube and double shiefding of component parts.

SPECIFICATIONS

Frequency Range: 4 Bands-No switching; $18-32$ Mc., 35-65 Mo., $54-98$ Mc., $150-250 \mathrm{Mc}$.
s2995 Audio Modulating Frequency: 400 cyeles (Sine Wave). Attenuator:
position, ladder type with constant impedance control for fine adjustment. Tubes Used: 6C4 as Cathode follower and modulated buffer. 6C4 as R.F. Oscillator, 6SN7 as Audio Oscillator and power rectifier,

Television Service Notes

By MICHAEL L. TORTARIELLO

Speedy television receiver servicing depends on the ability to locate the trouble quickly from the symptoms in the set. This article presents a number of troubles and their cures for some of the more popular TV receivers.

RCA

9 T270
All tubes light, sound O.K., picture goes from bright to dim. Upon becoming dim, the picture increases to about $11 / 3$ normal size and high voltage goes from a normal 12,500 to about 9,500 .

Inspection revealed that one of the 1B3-8016 high-voltage rectifier tubes in the voltage doubler also varied in brightness. The trouble was a defective $3.9-\mathrm{ohm}$ resistor in one leg of the filament circuit of the high-voltage rectifier.

91 C 272

Sound O.K., no horizontal sync, no raster on screen. Adjusting the horizontal hold did not remedy this condition.

C-159, a . $01-\mu \mathrm{f}$ capacitor in the horizontal oscillator, was leaking badly. Replacing it with a new $.01-\mu \mathrm{f}, 600$-volt capacitor fixed the trouble.

91275

Picture and sound O.K., but when a large white or black object or large lettering appeared on the screen, there was a disturbing smear.

Checked second video amplifier tube circuit, a $6 \mathrm{~K} 6-\mathrm{GT}$, and found an open L109, a $180-\mu \mathrm{h}$ peaking coil. The smear disappeared when this was replaced.

Westinghouse

II.600T16

A common fault in this set is the simultaneous burning out of these resistors: R-401, a 400 -ohm wire-wound focus control; R-407, 560 ohms; and R-410, 110 ohms. This trouble is caused by an internal short in the 6Y6-G highvoltage oscillator tube. Replace the tube and the resistors.

11-6|3K 16

Sound O.K., no raster, no high-voltage on picture tube.

Checking the high-voltage rectifier and the $6 \mathrm{Y} 6-\mathrm{G}$ high-voltage oscillator showed that the 1 Bi3-8016 rectifer did not light. The same tube in another set worked O.K. Further check showed that two turns of wire on the high-voltage oscillator transformer which supplies filament current for the 183-8016 had slipped a $1 / 2$ inch away from the primary. This made the coupling between the two windings too loose for normal operation. Fastening the windings in their proper place with household cement cured the trouble.

11-600T16

Sound O.K., thin vertical line on picture tube.

The 12AU7 horizontal multivibrator showed a normal sawtooth. Checked output of three 7A5 horizontal output tubes and found no signal and no B-plus. Tested R-406, a 5,000 -ohm wirewound variable width control, and found it burned out. Also one of the 7.45's was shorted.

H-60.71 12

Sound shaky, raster normal, video signal very erratic.

When the outdoor antenna was disconnected from the set, channels 2 and 4 worked normally with a short piece of wire attached to one of the antenna posts. Tubes in the front end were tested and the 6AG5 mixer tube was found gassy. Set worked normally on all channels when this was replaced.

$11-600 \mathrm{~T} 16$

No sound but noticeable hum from speaker, picture showed a crease about 2 inches from the left side.

Audio amplifier checked O.K. with an audio oscillator, but no sound was reaching the audio system from the 6AL5 ratio detector. C-211, the . $01-\mathrm{nf}$ a.f. coupling capacitor, was found shorted. Replacing this corrected the audio trouble and also eliminated the crease in the picture.

After about three or four months of use, the cathode-ray tube in these sets develops a brownish-yellow spot near the center of the screen. This is caused by a charge remaining on the two 500 $\mu \mu \mathrm{f}$ capacitors in the high-voltage circuit after the set is shut off. This trouble can be eliminated by disconnecting the lead from the $500-\mu \mu \mathrm{f}$ capacitor that goes to pin 7 of the 1 B3-8016 highvoltage rectifier tube. The manufacturer has already made this change in the late models.

Muntz

Model 169
Sound O.K., picture has normal brightness but opens to full width of screen and then shrinks to about is inches wide. This repeats about every 15 seconds.

A leaky $0.2-\mu \mathrm{f}$ capacitor in the screen circuit of the 6 BG6-G horizontal oscil. lator and output tube causes this trouble. Replace this capacitor.

Ansley

Model 703

Sound O.K., no raster, and no high voltage at the cathode ray tube.

The two 1B3-8016 high-voltage rectifiers and the 6BG6-G horizontal output tubes checked O.K. High voltage was present at terminal 3 of the horizontal output transformer. The trouble was finally pinned down to the high-voltage doubler rectifier circuit where the 500 $\mu \mu f$ capacitor connecting the two plates of the tubes was found shorted.

Saves Service Time and Labor Makes "PLUS'" Sales, too!

Cut time and labop in TV sepvicing
in on plus sales, too. Use Callmaster on every service call. When TV owners see (and hear) Callmaster used they buy on the spot. Callmaster proves ideal solution ta their prob. lem of hearing invalid calls or baby cries while viewing TV. You profit 2 -ways. In new servicing efficiency ... in added sales.

Yes, it's a new, plus morket . . . you can't afford to miss . . . can't miss with Callmaster.
Homeowners are sold on Callmaster-
SENSIBLE PRICE - economy consistant with qualiy.
PERFECT PERFORMANCE-a whisper of whim. per received true and cleap.
PLEASING APPEARANCE - lustrous, mahog. any-grain plastic cabinets . . . Lektric-Shok. pruf. double-thick.

You'll be sold on ifs-
PROFIT POSSIBILITIES - generous margin, quantity discounts.
SIMPLE INSTALLATION - easier to hook-up than standard doorbell system.
COMPLETE LINE-Master and Sub' sets (illus.) Multi Sub' sets with Selective Masters-deluxe All-Master systems.
FIND OUT TODAY-how you and Callmaster can make every servicing call a selling call. Ask your favorite Distributor about this proved profit pockoge.

Wr. M. SMITH COMPANY 20 FERGUSON AVE., BROOMALL, PA.

..this letter speaks for itsef!!

Admiral Coipotation

Mr. Mil Bonkring
57 peon Dactric company
5200 vert tivesis sureat
calcero wh. I2linots
Deate Mint
The 1s wo wil you heom dullightad we we bact
2t Adosurel with the per vodel 303 shmpeon
vecus Trion voithor dew lodel 303 shepreon vecentile instinment ior inderision servicing

The large meter is very leghble, and yet the instryment itsels is compect ilze. I partheviarly like the IC poltage range, mich is the whest I've ever seen on this type of Instrument.

Our service engineers think you've done a good job on the operator's Hanval, too, because it is both complete and concies.
of course, Fe've used the Stmpson yodel 260 Nolt-Chmalilliametar for years. The ne 260^{n}. Congratulationsi
\qquad be DNKRNL CORPOPATIOS M. J. Schinke Hationil sorrice Hansis

Model 303 VACUUM TUBE VOLT-OHMMETER

SPECIFICATIONS

OC Voltage
Ranges $1.2,12,60,300,1200$ (30,000 with Accessory High Vollage Probe)
Input Resistance 10 megohms for all ranges
DC Probe with one megobm isolating resistor Polarity DC Probe with one
reversing switch
Ohms Ranges 1000 (10 obms center)
100,000 (1000 obms center)
1 megohm (10,000 obms cernter)
10 megobms (100,000 obms center)
1000 megohms (10 megobms center)
AC Voliage
Ranges l.2, 12, 60, 300, 1200
Impedance (with cable) approx. 200 mmf shunted by 275,000 obms
AF Voltage
Ranges 1.2, 12,60
Frequency Response Elat to 100,000 cycles
Decibels
Ranges -20 to $+3-10 t 0+23,+4 t 0+37$
$+18 t 0+51,+30 t 0+63$

Zero Power Level 1 M. 1F.. 600 obms
Galvanometer $\begin{aligned} & \text { Zero center for } E M \text { discriminator alignment and }\end{aligned}$ other galianometer applications
R. F. Voitage
(Signal tracing uitb Accessory Higb Frequency Crystal Probe)
Range 20 volts maximum
Frequency Flat 20 KC to 100 M.C.
105-125V. 60 cycles
Size
S1/4"x $7^{\prime \prime} \times 31 / \mathrm{s}^{\prime \prime}$ (bakelife case). Weight: 4 lbs
Shipping F t.: $61 / 2$ lbs.

Dealer's Net Price

Model 303, including DCV Probe, ACV-Obms probe and Ground Lead-\$58.75
Accessory High Vrequency Probe, $\$ 7.50$;
Accessory Higb, Voltage Probe, $\$ 14.85$
Also available witb roll top case,
Model 303RT-\$66.70

0

METER FOR POWER SUPPLY

 CHECKS VOLTS AND AMPS
By I. Queen

Any utility power supply becomes far more useful if it can measure voltage, current, and power into its load. The only parts to be added are a milliammeter, s.p.d.t. switch, and a couple of resistors. Current and voltage are measured separately (see figure). The product of these numbers gives the power.

The shunt S parallels the meter for measuring current. Its resistance is found from the following:

$$
\mathrm{S}=\frac{\mathrm{MA}}{\mathrm{I}-\mathrm{A}},
$$

where M is the meter resistance, I the maximum load current, and A the meter current for full-scale deflection. For an

The circuit for using a milliammeter to measure the power supply's output.
example, assume M is 100 ohms, I is 100 ma , and A is 1 ma . The shunt should be 1.01 ohms.

The multiplier R is connected for voltage measurement. Its resistance should be

$$
\mathrm{R}=\frac{\mathrm{V}}{\mathrm{~A}}-\mathrm{M}
$$

where E is the maximum voltage to be indicated.

Only slight errors are introduced by the presence of the meter. Generally they are neglible.

USING SMALL MAGNETS

The chart for my tube tester is on a large cardboard sheet. There are no index lines so it is easy to make a mistake in setting up the tester. To avoid mistakes, I place the chart over a sheet of galvanized iron and use a thin bar magnet as a movable index point or pointer. You can even cement the chart to the metal sheet and hang it on the wall. A strong magnet will remain in position until you move it.-.Joseph Amorose

"Remember that old pop-up toaster you were going to throw out?

YOU'RE FIRST IN LINE! FOR TOP VALUES II TV, RADIO \& ELECTRONICS

Be the first to know of the Latest and Best Buys in TV, Radio and Electronic Equipment. . . Get on Concord's Mailing List. Be sure you get the new Buyer's Guide.. . issued periodically and packed with the latest available merchandise. This way, when merchandise is available to us. . . it goes straight to you. Order yours Now.

PUT YOUR NAME ON CONCORD'S MAILING LIST

NOW!

Bargains . . . Values . . . Savings. Now you're assured of getting the latest scoops on Radio, TV, and Electronic Equipnent First-hand. Send today for your Concord Buying Guide. Just fill in the coupon at the right. Send all orders to Concord - Chicago,

OUTSTANDING GONGORD BUYS

MOBILE HIGH VOLTAGE PWR. UNIT

Abstract

For mobile radios, amateur equipment, PA amplifiers, and many other types of equipment. Well buitt, made of the finest materials available to meet strict specifications. Especially adapted to furnish plate supply for above mentioned units. Input 12 volts at 10 amps . Output consists of two volt ranges. (1) 275 volts at $10 \mathrm{ma},$.12 volts @ 3 amps. (2) 500 volts at 50 ma. Contains two nationally known permanent magnet dynamotors, complete with all hash filters. Each high voltage range is individually fused and the input has an 'on and off' switch and an indicating pilot light assembly. Olive drab wrinkle finish. Size: $8-3 / 8^{\prime \prime} \times 6-1 / 4^{\prime \prime} \times 11-5 / 8^{\prime \prime}$ 5-9513R - Shpg wt. 27 lus.

\section*{PERMANENT MAGNET DYNAMOTOR}

Input $12 / 24$ volts @ $8,4 \mathrm{amps}$., output $12 / 275$ volts @ $3 / .110 \mathrm{amps}$.

 $9-9589 \mathrm{R}$ - Shps wt. $10 \mathrm{lbs} . .$. ... $\$ 3.95$
CAL 88 HIGH-SPEED SOLDERING GUN

New Cal-88 Soldering Gunheats in about 5 seconds! Choice of two heats from sametrigger: 100 watts or 150 watts. Built-in light shines directly on your work. New single pole electrode lets you work faster in narrow spots. You can see what you are doing. Beryllium copper electrode requires no tinning. Can be replaced in two seconds.
Long duty cycle-heats up in about 5 seconds and can be kept on for about 10 minutes. Its off duty cycle is only 5 minutes. Light in weight... only 1-1/2 lbs! This, plus non-tiring pistol grip and perfect balancing make this the easiest-to-use soldering gun yet. Built-in 1.5 amp fuse protects the transformer. All parts of gun are replaceable.

14.65

AT TERRIFIC PRICE REDUCTION

18-14864R-Shpg. wt. 2 libs....................
RECORDING TAPE

Best Recording Tape Buy on the market! Made by a famous national manufacturer to Concord's strict specilications. 1200^{\prime} long, $1 / 4^{\prime \prime}$ wide with uniform coating of red oxide particles on kraft paper base. Magnetic coating wound facing in. Plastic reel included. Order while our supply lasts.
35-16297R - 1200' Kraft Paper Base Tape.
1.49

As above but on stronger more efficient plastic base for more uniform out put and lower noise level.
33-16296R - 1200' Plastic Base Tape.

For prompt service on Export Orders and Inquiries Address to Concord Radio Corp., Export Division, 901 W. Jackson Blvd., Chicago 7, मlinois.

TV SERVICE campaign ever launched!

IERE'S the hardest hitting . . . and the most complete advertising campaign ever planned, to bring service business to every dealer who displays the Sylvania emblem.

All during 1951, your prospects are certain to SEE, HEAR, and READ about your expert service in magazines, on television, and through window displays.

The great Nation-wide TV show, "Beat the Clock," featuring Bud Collyer over CBS-TV, will go to bat for your service and the Sylvania products which you sell. Clever animated cartoon commercials on the CBS-TV station in your area will inform prospects of your expert workmanship and prompt service.

Tying everything together is the greatest and most colorful dealer tie-in program you have ever seen!

You get FREE giant, full-color displays of the featured stars. You get counter cards . . . bright window streamers . . . spot radio announcements . . . mailing pieces... all designed to identify you as the Sylvania Service Dealer advertised on television and in the national magazines.
Ask your jobber for full information about the bigger-than-cver 1951 Service Dealer Advertising Program. If be can't give you all the facts, mail the coupon now!

Be sure to display this emblem. Put up these
 Sylvania decals right now! This seal is the target of the whole Sylvania Service Dealer campaign. Put them on your windows and on your trucks. Made in 8 -inch and 12 -inch sizes. Order a supply from your jobber TODAY! They're free!

- Supplied in 10 foot sections for heights of $10,20,30,40,50$ or 60 feet.
Mounts easily on peaked roofs or flat surfaces.
- Handy mounting hardware packaged individually.

Wind turbine co. 260 East Market St., West Chester, Pa.

Eyperimental setup of oscillator in Fig. 1-c used for making oscillograms. Special Unichassis in center is made for experimental work and simplifies breadboard wiring. Experimental power supply appears at the right in the photograph.

Electronics and Music

Part VII-Designing tone gen-

 erators for electric organsBy RICHARD H. DORF*

cONSTRUCTING a polyphonic electronic musical instrument is a big job compared to building many other electronic devices. Sixty separate tone frequencies must be available for even a single-manual, fiveoctave instrument. So the number of components will not be small. And after the bare tone frequencies have been provided, the tones must be shapedvaried in quality-and volume-controlled. Keying delay should also be provided; vibrato or tremolo is needed; couplers may be desired between manuals; octave couplers may be wanted; manuals (and pedals) and a console must be secured or made; and so on.

Building an electronic organ is not a job for the novice, nor is the design for such an instrument a decision to be taken in five minutes. But strangely enough, initial generation of the necessary tones, which is what this article deals with, is the easiest part of the job.

There are only two basic requirements. The first is to provide as many tone sources as necessary and the sec* Audio Consultant
ond is that each should be of the correct pitch. These requirements indicate that (initially at least) the designer may consider all of the many oscillator circuits brought forth up to date.

Depending on what the designer has in mind, several other conditions may have to be met, and they may be no less important than the basic ones. The tones must be keyed somehow, and it may be desirable to key the oscillators themselves without running into "chirp" or clicks. A keying delay should be included somehow. The oscillators themselves may have to provide it. The desired waveform may be anything from a sine to the most complex and the oscillators rather than following tone-shaping circuits may have to provide it. Frequency stability may be important unless there is some provision for synchronization. And other points may crop up, not the least of which may be the necessity of keeping costs and space requirements down.

For frequency stability it is desirable to have all oscillators tuned to the octaves of each of the 12 notes synchro-

ALL RANGES WITH THIS - ONE CONTROL
 Just one knob-extra large-easy to turn-flush with the panel, controls all ranges. This one knob saves your timeminimizes the chances of "burn-outs" because you don't have to remember to set another control. You can work fast with Model 630 with your eyes as well as your hands. Look at that scale-wide open-easy to read, accurately. Yes, this is a smooth TV tester. Fast, safe, no projecting knobs, or jacks, or meter case. Get your hand on that single control and you'll see why thousands of "Model 630 's" are already in use in almost every kind of electrical testing
 FOR THE MAN WHO TAKES PRIDE IN HIS WORK

Triplett
TRIPIETT ELECTRICAL INSTRUMENT COMPANY - BLUFFTON, OHIO, U.S. A.

THE WORLD'S

MOST POWERFUL

ANTENNAS

LaPOINTE-PLASCOMOLD CORP.
LaPOINTE-PLASCOMOLD CORP.
WINDSOR LOCKS, CONN.
WINDSOR LOCKS, CONN.
Please send me new 1951 catalog of VEE.D.X
Please send me new 1951 catalog of VEE.D.X
alease send me newsories.
alease send me newsories.
NAME
NAME
STREET
STREET
CITY
CITY
ZONE
ZONE

Fig. 1—Six oscillators suitable for producing tones for electronic music.
grid circuit is tuned and a secondary winding on the inductor feeds back energy from the plate. As in all feed-back-transformer arrangements, the connection polarity of primary and secondary must be correct for positive feedback; if the circuit does not oscillate, reverse the connections to primary or secondary (not both).

Fig. 1-b diagrams the tuned-plate (grid-tickler) oscillator, which is exactly the same as that of Fig. 1-a except that the plate circuit is tuned. In this case the values of the tank inductor and capacitor play the greatest part in

These oscillograms show what happens when feedback in a conventional oscillator is too great and when the time constant of the grid-leak is too long. The perfect sine wave results when feedback is reduced to the optimum value by any of the methods illustrated in Figs. 1-c through 1-f, or by using a suitable transformer.

New 1950 Television Manual This newest giant volume of the serfes covers
1950 factory data on all popular television sets of all makes. There are circuit explana tions, 114 pages of alignment procedure fest thatterns, response curves, pages of wavemammoth 11x15" blueprints. Manual \$3 1949 T-V Manual. Similar to the rolum listed above. Itas 160 extra-larke pages, plue Tu order see coupon below, only........ \$3 1948 T.V Manual, Earlier volume has mate Lapre size popular lucluding 8 fold-out blueprints. only... $\$ 3$ 1947 FM and T.V Manual. Covers all needow FM and television sets includin

RADIOCOURSE

AMAZING BARGAIN IN HOME-TRAINING Here is your practical home-study course at a give-away price. The 22 lessons cover all topics just like other correspondence radio courses selling for over $\$ 150.00$. Our amazing offer permits you to obtain the
 course complete for only $\$ 2.50$, nothing else to pay. Course covers fundamentals, modern circuits, practical radio repairs. Includes hundreds of diagrams, thousands of repair hints, many trouble-shooting short-cuts.

COVERS EVERY TOPIC OF RADIO SERVICING

\qquad
 first week 1 studled renairing
built $m y$
sewn
own built my own test given in this course. I have repaired 100, radios to date. . Hammel, 120 W. 13 th, Davenport,

The easy-to-follow lessons of this home-study course will show you quickly how to repair all types of radio sets. There are lessons on how to open a shop and operate a successful radio business. Every lesson is well illustrated, in teresting to read, really easy to understand and apply. No special previous knowledge is needed. The early lessons explain important principles. Other lessons cover test equipment, troubleshooting, circuit tracing. television, and every important topic of radio servicing.

PRACTICAL OH-THE-JOB MATERIAL

Learn new speed-tricks of radio fault-finding, jase histories, servicing short-cuts. exira profit of recular test equipment, explanation of sipnal tracing, use of oscilloscone, 1 ransmitters, I^{\prime}. A clevision, recorders, cte. Let this information save for you enough time on a single joh to pay the
fall price of $\$ 3 . i o n$, for the complete course of these money-making lessons

EASY TO UNDERSTAND AND APPLY

The practical lessons of this course-manuta are areds of radow and anply to actual radio jobs. Hunwill be quackiy cleared up. You will find yourself doing radio repairs in nainutes inetead of hoursquickly findinf faults or making adsustments Every new radio development of importance and
thousands of time-saving facts are packed into this glant-sized completc course-book.

SATISFACTION GUARANTEED

Use the NO-RISK colsmon at right to order the complete COMRSE for 10 -day examination in your own home. Louk over the material, read a few lesdecide to lkeen the iossons sereral radios. price of \$a.50 (full cost), or return the $\$ 4$
material for a cash refund. Act today,

Supreme Publications

SUPREME RADIO MANUALS

New 1950 Radio Diagrams

 Now you can benefit and save money with Supreme amazing scoop of 1950 . This one giant volume has all the service data you need on all recent radio sets. Here you have clearly-printed large schematics, needed alignment data, parts lists, voltage values, and information on stage gain, location of trimmers, and dial stringing illustrations. This is the help you need to find tough faults in a jiffy. The new 1950 radio manual is a worthy companion to the 9 previous volumes used to an advantage by over 128,000 shrewd radio men.
BIGGEST BARGAIN IN SERVICE DATA

Wise servicemen know that Supreme Publications manuals have all the material needed at the lowest prices. For the remarkable bargain price (only $\$ 2$ for most volumes) you are assured of having on hand needed diagrams and all other essential repair facts on almost all sets you will ever service. Every popular radio of all makes, from old-timers to new 1950 sets is covered. Select manuals wanted, see list below, and rush no-risk order coupon
SUPREME RADIO MANUALS for PREVIOUS YEARS

| 1949 | 1948 | 1947 | 1946 | 1942 | 1941 | 1940 | 1939 | $1926-1938$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SUPREME | Most-Offen | Needed | RADIO | DIAGRAMS | Each | RAD10 | | | Manual only $\$ 2$. 1949 is $\$ 2.50$); 192 pages of diagrams, align- Diagra ment data, voitage values, parts lists, and service hints; 240 Pages large size, $8 \frac{1}{2} 2^{\prime \prime} \times 11^{\prime \prime}$. To order, see coupon below.

Price $\$ 2.50$

NO-RISK TRIAL ORDER COUPON

 SUPREME PUBLICATIONS, 3727 W. 13 St., Chicago 23, ILL.
I am enclosing \$ Send postraid.

- Send c.o.D. I am enclosing \$. . . deposit.

However, a potentiometer R1, which may be anywhere between 10,000 and 100,000 ohms or even more, is shunted across L2 and the arm is adjusted until just enough voltage is fed to the grid to sustain oscillations. At this point the waveform will be almost pure sine (if the grid-leak components R2 and C 2 are chosen correctly) and the frequency will be most stable and nearest to the resonant frequency of $L 1$ and C1. Once the correct values for the upper and lower halves of R1 have been found, the potentiometer may, of course, be replaced with a pair of $1 / 2$-watt resistors.

The same trick may be done in a slightly different way by using the circuit of Fig. 1-d. Here resistor R is a series limiter. This, incidentally, is a well-known form of resistance stabilization ordinarily used to stabilize frequency. It is also useful here, of course, to compensate for the fact that the transformer turns ratio is not ideal.

Fig. 1-e illustrates a method of combined stabilization and feedback correction original with the writer (although it was probably original with other workers at prior times). As usual with the standard interstage transformer used, the positive feedback is too great for stable sine-wave oscillation. The positive feedback is produced in the usual way.

Fig. 2-This stable audio tone generator uses the electron-coupled circuit.

The excess of positive feedback is remedied by adding negative feedback. An oscillator of the feedback type may be considered simply as a perfectly standard amplifier which produces its own input. The amplitude of oscillation depends on two things: the amount of coupling between plate and grid, and the amplification of the tube. The previous circuits have been stabilized by varying the coupling. In Fig. 1-e the feedback voltage is lessened by reducing the amplification of the tube. R2 is a simple negative feedback resistor from the plate to the grid. C 2 is a blocking capacitor which should have a low reactance compared to the resistance of $R 2$.

After the circuit is connected, R2 is varied (use a 10 -megohm potentiometer) until the circuit just oscillates. The positive feedback voltage is then correct. In addition, since the amplifier is operating with a fair degree of negative voltage feedback (the degree of permissible negative feedback depending on how much too large the transformer secondary voltage is), it is itself stabilized to a large degree against changes in amplification caused by fluctuations of supply voltages. Since, in an audio oscillator of this kind, changes in plate current and
amplification, rather than changes in tube-element capacitances cause most of the undesirable frequency irregularities, stabilizing the amplifier helps matters considerably. An additional effect of the negative feedback is to lower the tube's effective output impedance, reducing the importance of any tube output capacitance that may affect the frequency, especially in the higher octaves.

Fig. 1-f is a standard Hartley oscillator, which is usable for electronic music. Since, however, most tapped inductors ordinarily available are cen-ter-tapped (often primaries or secondaries of push-pull transformers), there will be too much feedback. This can be reduced by inserting a resistor at point X.

Output may be taken from the plates of any of the oscillators shown in Fig. 1 without a great effect on frequency, provided the impedance of the load is high and its shunt reactance low. For maximum freedom from loading effects, however, especially where the load is keyed or otherwise altered during operation, electron coupling is desirable. Almost any feedback oscillator may be used in an electron-coupled circuit. The method illustrated in Fig. 2 is to use a pentode tube and employ the screen as the oscillator anode. The circuit of Fig. 2 is exactly the same as Fig. 1-a with those exceptions. The screen does not, of course, draw much current, but
the electron strean passing through it to the plate is modulated by the oscillations. The plate output, taken across a standard load resistor, is of the oscillation frequency and may be passed on to following stages. The output capacitor is uncritical, values between .01 and $.05 \mu \mathrm{f}$ being suitable.

Changes in the load which would affect the plate current have little effect on the oscillator circuit, and reactive loading of the plate has almost none at all. The screen supply voltage should be somewhat less than that supplied to the plate and should, of course, be under the naximum specified by the tube manual. It may be obtained from a tap on the power-supply bleeder resistor. The tap should be bypassed to ground.

The discussion of vacuum-tube oscil. lators for polyphonic electronic musical instruments will be continued in the next issue.

STABLE TONE GENERATOR

Stable a.f. or ultrasonic signals for test and control purposes can be generated by heterodyning signals from two crystal-controlled oscillators. Any conventional oscillator can be used. Feed the outputs into the grid circuit of an a.f. amplifier and the difference frequency will appear at the plate. Suitable crystals can be obtained on the surplus market for less than one dollar each.-Francis Roberts

TELECOLOR FILTER is one of the latest discoveries, its special formula coloring gives brilliant pleasing color tone, life-like color depth, reduced eyestrain and glare. TELECOLOR FILTER manufacturer does not claim to give three colors but it guar. antees to transform a dull black and white picture into many shades of a glorious color tone. It is also guaranteed to work on any make and model television set. TELECOLOR FILTER will give contrast similar to the black tube and color tones the high lights on black tubes. It is perfect for daylight or lighted room viewing. Children love the color toned pictures. Wonderful as a gift. Can be enjoyed now and for years to come.
No matter which color system is adopted. TELECOLOR FILTER will still continue to give you color toning enjoyment on the stations broadcasting black and white pictures. Results are better than you get with filters costing four times as much. You will find new interest and happiness in favorite programs with the life-like color depth and clarity that is missing in dull black and white. Free information.
HARVARD LABDRATORY, 659 Fulton Street, Dept. RE-1, Brooklyn 1, N. Y.
 GHARARD LABORATORY, 659 Fulion Street, Dept. RE-1, Brooklyn 1, N, Y

- Please send TELECOLOR FITTER

Studying punched card record of dial system operation. Each card (top) can report 1080 items

In a large, modern dial telephone office, $2,000,000$ switch contacts await the orders of your dial-and 10,000 of them may be needed to clear a path for your voice when you make a single telephone call. Within this maze of signal paths, faults - though infrequentmust be detected and fixed before they can impair telephone service.

The latest system developed by Bell Telephone Laboratories automatically detects its own faults, detours calls around them without delay-then makes out a "written" report on what happened.

The fault may be a broken wire, or a high resistance caused by specks of dirt on switch contacts. In one second, the trouble recorder punches out a card, noting in detail the circuits involved and the stage in the switching operation where the fault appeared.

Maintenance men examine the reports at intervals and learn what needs attention. Between times they go about their own duties in keeping service moving.

This is another example of how research at Bell Laboratories helps your telephone system operate at top efficiency, so the cost to you stays low.

By GEORGE FLETCHER COOPER

An amplifier design. Output is ten watts and response flat from 30 to 15,000 cycles

In the previous article we examined Mr. Williamson's amplifier to determine how to apply the design methods described in earlier articles. Now we shall consider a new design from the beginning.

We shall start off with the assumption that the gain of the amplifier is to be 50 db (316 times), that the output power is to be 10 watts, and that the
which is about 12 in voltage gain. A miniature pentode, such as the 6AU6, will do this very nicely. So, for that matter, will a 12AT7 triode.

The so-called seesaw circuit gives a gain of about 40 , which means an input of rather less than $1 / 2$ volt without feedback, or 5 volts with feedback, will be needed. This is at the grid; and if we use a transformer stepping up from 600

Fig. 1-Circuit of the amplifier whose design is described in this installment.
distortion is to be below 1%. It really is not worth while pressing the distortion below $1 / 2$ to 1%, because the transmitter distortion is more than this if we take a broadcast signal, while dise distortion is a good deal more than 1%. The response should be uniform from 30 to 15,000 cycles.

To get 10 watts we may use, as Mr . Williamson does, 6 L 6 or KT66 tubes, but we shall use them as tetrodes with a lower plate voltage. This will save quite a lot in smoothing capacitor costs. I will use figures for the KT66, but the 6 L 6 values will not be significantly different. Since the distortion requirement suggests that we aim at 20 decibels of feedback, the over-all gain without feedback must be at least 70 decibels, or approximately 3,000 times.

First, then, how many stages? A KT66 has a mutual conductance of $6,150 \mu \mathrm{mhos}(5,200 \mu \mathrm{mhos}$ for 6 L 6) and an optimum load of 2,200 ohms $(2,500$ ohms for 6 L 6). This gives a gain of just over 26 times for the two tubes. An input transformer, for I have assumed that we use one, will give about 20 db gain, or 10 times (This is not, of course, a power again). We need, therefore, an additional gain of $3,000 / 260$ times,
ohms to $100,000 \mathrm{ohms}$, we shall require roughly 0.3 volt at 600 ohms for the input.

The output stage

My main difference in approach from Mr. Williamson is in the design of the output transformer. He keeps the direct current balanced and uses a large inductance. I use the smallest possible inductance and then allow an air gap to avoid dependence on the d,c, balance. It seems easier that way. We begin with the design of the output transformer.

To make life easy, I have assumed that the load impedance is 10 ohms. The lowest frequency is to be 30 cycles, and we want the output transformer to be as small as possible. If the inductance is made too low, however, we shall get distortion in the transformer and the load as seen by the tubes becomes reactive. A fairly sound working rule is to allow the response to drop by 3 db : this rule has the additional merit that it is simple. The reactance must therefore have on its low-impedance side a reactance of 10 ohms at 30 cycles, or $2 \pi \times 30 \mathrm{~L}=10$, or $\mathrm{L}=50 \mathrm{mh}$.

The optimum load for each tube is 2,200 ohms $(2,500 \mathrm{ohms}$ for 6 L 6$)$, so
that the transformer must have a ratio of 440 to 1 , center-tapped, in impedance, or 21 to 1 in turns. The high side inductance is equal to $440 \times 50 \mathrm{mh}=22 \mathrm{~h}$ (25 h for 6 L 6). The air gap must be chosen so that the inductance is not altered appreciably by a current of 20 ma. This is the unbalance current which may be obtained if the two tubes are at opposite ends of the tolerance range. The only effect of a drop in transformer inductance will be an increase in distortion at the lowest frequencies.

The circuit

Before going any further we need to draw the circuit diagram, as far as we know it. This is shown in Fig. 1. Since we have only two stages, there is theoretically no possibility of low-frequency instability: if we want to add another stage to obtain a high-impedance input, we must watch this in the design. The first step is to decide on the value of C 2 and C3.

For class-A operation, R9 and R10 can be made 470,000 ohms. This value will be chosen, because the larger R 9 and R10, the smaller C2 and C3 for the same $R-C$ product. The output transformer is designed to have a characteristic frequency R / L of 30 cycles which brings its response 20 db down at 3 cycles. The reader can check this for himself, but it is exactly the same as saying that the response falls 6 db per octave.

To provide $20-\mathrm{db}$ feedback. the response must be down 26 db , at least.

Fig. 2-The low-frequency response of the feedback amplifier.

ALL GLASS 16FP4 BENT-GUN TELETRON

The Finest C. R. Tube you can buy-at the lowest price!

$$
529.9
$$

FULLY GUARANTEED in factory-sealed cartons IMMEDIATE SHIPMENT!
SERVICEMEN: ORDER THIS TUBE NOW FOR HOLIDAY DEMAND. BE PREPARED WITH EMERGENCY TUBE REPLACEMENTS.
FPEE $\begin{array}{cc}\text { WITH } & \text { RADIO'S } \\ \text { ORDER } & \text { MASTER }\end{array}$
1200 PAGE REFERENCE MANUAL

Fecteritg P Pmoctast
 - 66 DEY 5T., NEW YORK 7, N. Y. .
 Dicer 9-3050

NEWARK, N. J.
ALLENTOWN, PA
EASTON, PA.
114 Hudson St.
1115 Hamilton St. 701 Northampton St.

HOTTEST TV PACKAGE for "ONE BUCK"!

- Hints for Better Performance on your gi30TV.
- Illustrated Television Conversion Manfications
- Pulse Keyed Tyac AGC Circuit Diagram.
- RMA Handy Resistor and Mica Code Charts. ${ }^{1}$. 00 Brooks, 84 Yesey St., New York 7, N., Y.

[^7]If we take the frequency at which ${ }^{(1)} \mathrm{CR}=1$, we have 45 degrees of phase shift, so that for two similar R-C terms (one from the preamplifier stage which we may add), there is a 90° phase shift at $(1)=1 /$ RC. The transformer gives 90°, too, so that we must make $1 / \mathrm{CR}$ less than $2 \pi \times 3$ cycles, to allow $26-\mathrm{db}$ feedback at the 180 degrees point. This means a capacitance of at least $0.1 \mu \mathrm{f}$ must be used. Let us go ahead with this value, and if necessary use a slightly more sophisticated preamplifier stage.

The phase splitter

This reservation has been made because we have not yet considered what happens in the phase splitter V1. This circuit is a rather attractive one, and seems to work very well. The first half of the double triode acts as an ordinary amplifier, with a plate load R4. The second triode is driven by the difference in plate voltages between V1-a and V1-b.

Fig. 3-High-frequency phase curves.
The two tubes seesaw about the fulcrum P. That, at least, is the usual way of describing the operation of the circuit. There is, however, another way of looking at it. The output from V1-a is applied, through the voltage divider R6-C1-R8, to the grid of V1-b. R7 provides feedback to make the gain in V1-b sufficient for pushpull operation.

Looked at like this it is easy to see that the phase shift produced by C1-R9 is greatly reduced by the feedback, which is of the order of 20 db . I should like to go into this more fully, because the usual analysis of this circuit tends to conceal this rather important fact.

The suspicious reader may have noted that I have not mentioned C4 yet. If the two triodes are really operating in pushpull, the current in R3 should not contain any alternating component, and C4 has no decoupling function. It is indeed, a safety term, put in to deal with any tendency of the stage to act as a cathode-coupled multivibrator at very high frequencies. I have not found it necessary, but if there is excessive capacitance across R 6 , C4 might save the situation.

High and low response

The over-all response curves are shown as Figs. 2 and 8. It will be seen

SERVICE MEN!

WE'RE ALWAYS ON THE LOOKOUT FOR SAVINGS TO PASS ON TO YOU. WE KNOW THEY'RE ESPECIALLY WELCOME WHEN PRICES EVERYWHERE ARE GOING UP. HERE'S OUR LATEST ''SCOOP'! PHILCO
MODEL 7170 AM \& FM SIGNAL GENERATOR
A \$97.50 instrument for $\$ 64.50$

A great help to every Serviceman. Ideal for both AM and FM use. No switching trouble between bands, calibration accurate within $1 / 2$ of 1%. Exceptional stability. Drift not over $1 / 2$ of 1%.
requency Range SPECIFICATIONS
$\begin{array}{ll}\text { R.F. (AM) } & 100 \mathrm{ke} . \text { to } 110 \mathrm{mc} \\ \text { R.F. (FM) } & 100 \mathrm{kc} \text { to } 170 \mathrm{me}\end{array}$
Audio Frequency
100 kc . to 170 me .
R-F Output Amplitude
A-F Output Amplitude
Sweep Width
Sweep Rate
Calibration
FM-Oscillator Frequency
Operating Voltage
Tube Complement
600 cycles
6-I volt (r.ms.), depend
ing upon range ing upon range volt (r.m.s.) approximately
Variable from 4 kc to 500 kc Variable from 4 kc . to 500 kc
$60-\mathrm{c}$.p.s. (fixed) 60-c.p.s. (fixed)
Direct reading Direct
60 mc

ORDER NOW!

QUANTITY LIMITED

$\$ 64.50$ FREE $\begin{gathered}\text { WITH } \\ \text { ORDER MADIO's } \\ \text { MASTER }\end{gathered}$

1200 PAGE REFERENCE MANUAL

Fegoratid Pimitharer
 . 66 DEY \$T, NEW YORK 7_{r} N. Y. Dieer 9.30so

114 Hudson St.
1115 Hamilton St. 701 Northampton St.

NEW CONDENSER TESTER

Finds Intermittent Condensers Instantly
Pres-probe's sliding tip
with variable resistance With variable resistance
prevents condenser
ceating prevents condenser
healing. Tests with power on. Requires uesswork. Sayes lime. Convenient probe size ($71 / \mathrm{R}$ " long)
 Sarisfaction guaranteed
PRES-PROBE CO.
2326 N. THIRD ST., MILWAUKEE 12, WIS.

OPPONENT:

Likewise, T. E. I. engineers and production personnel work as a unit with a similar goal - the conquering of TIME's deteriorating effects through the building of an ever-stronger picture tube. For Thomas' highly trained personnel, specially designed equipment, and efficient production techniques are consistently increasing the life of Thomas tubes in the contest with TIME.

For the greatest vatue in today's television picture tubes-for top operating efficiency and truly LONGER life -specify I. E.I. In all popular rectangular sizes, black-face.

Absolutely free

A penny posecard with your return address will bring you the very datest iss the LI.S. Simply address "Dept. A"

THOMAS ELECTRONICS, Inc. wis nom shom

Radio Parts Jobber or order direct from factory.
Over 43,000 Technicians Have Learned HOW TO GE THE MOST OIT
OF BASICTEST EOUPMENT Why Not You, Too?

SERVICNING by SIGNAL SUBSTITUTION
 A BEST SELLER FOR OVER 9 YEARSI (NEW, UP.TODA

 The Simple, Modern, Dynamic Speed Apprablems, AM-FM-TV. ceiver Adjustorn to learn - Universal - non-obsolescent Employs Oniy Basic Test Equipmentـ

Ask for
"S.S.S." at your local

PRECISION APPABATUS COMPAMY, II
that with two R-C eircuits there is 21 (d) of feedhack for the 30-degree phase margin. and that under these conditions the gain margin is just over 6 db. Because the e margins can he easily increased by increasing the capacitances, we need not worry about the lowfrequency response.

The high-frequency stability is, as always, a problem. The values chosen for R4 and R5. with the total interstage stray capacitance and the tube impedance, about 1.200 ohms, give $\mathrm{R} \times \mathrm{C}=$ $40 \times 10^{92} \times 10,000$, a characteristic frequency $\%=2 \pi \mathrm{f}_{0}=2,500,000$. The interstage circuit should therefore be flat un 10 about 400,000 cycles.

The exact design of the output transformer now comes under consideration. With a factory under my office, I can get any transformer I want. The reader will probably prefer to buy one ready made, or at least use the parts he already possesses. The only thing to avoid is the influence of the output transformer at high frequencies. To do this we shall add a few small components and then determine the limits to be imposed on the transformer.

Feedback resistor

Let us assume that we do not want any frequencies above 14,000 cycles, or at least that the response can roll of there. We shall begin by calculating the feedhack resistance, which is in the little box marked X in Fig. 1. Our gain requirements are that 0.25 volt at 600 ohms at the input must give 10 volts aeross the 10 -ohm output.

Assuming a 1 to 10 stepup in the input transformer, we have 2.5 volts across R1. Since we need only 0.25 volt from guid to cathode, across R2 we must have 2.25 volts. Immediately, therefore. $\mathrm{R} 2 \mathrm{Rx}=2.25 /(10-2.25)=$ $1 / 3.4$. Let us take $\mathrm{R} 2=1,000$ ohms, and $\mathrm{RX}=3.400$ ohms. We use a standard valne here, 3,300 ohms. To produce the required roll-off at 14,000 cycles connect a capacitor in parallel with this resistor. The capacitor must have a reactance of 3,300 ohms at 14,000 eycles. so that the capacitance will be $.003 \mu \mathrm{f}$.

This capacitor is very important, because it produces a phase shift rising to

Fig. 4-The preamplifier that may be used in place of the input transformer. 90 degrees and in the opposite sense to the phase shift produced by the transformer. The result is that, without the preamplifies stage, the system must be stable so long as the transformer has no awkward resonances. The practical implications are that we design the transformer for the right low-frequency inductance and use the simplest possible balanced structure. This is necessary if we are to avoid these odd resonances due to partial leakage inductance. Hav-
ing done this, we can very profitably load down the two halves of the primary with capacitance to make the frequency response drop off above 14,000 cycles. Something of the order of .003 to $.005 \mu \mathrm{f}$ is indicated here, but I have not shown these components.

Does this seem rather vague? It is not really, because now the reader should have acquired some sort of "feel" for these circuits. Gardeners talk about people who have the green finger! The most important thing in this work seems to me to be to acquire the "feedback filter": I dare not give it a color because they all seem to be political nowadays. The important thing is to be able to sketch the phase characteristic on the back of an old envelope, and then to correct it.
My own amplifier, built to this general design, gives about 0.3% distortion at 1,000 cycles at 10 watts output, and 0.5% at 30 cycles and 6 watts output.

A preamplifier stage

The circuit diagram of a possible preamplifier stage is shown in Fig. 4. The interstage network is made up of two parts: R1 and C1, for high frequencies; C2, C3, R2, R3 for low frequencies.

I want to discuss this type of interstage circuit in detail some time-a little further along in this series. The basic idea is to provide a step in the amplitude response, and this enables more feedback to be used. We saw this, in a simple way, in connection with the cathode and plate decoupling circuits.

RADIO AND ELECTRONIC EQUIPMENT TITATIIID

TECRLNTCAY appunarce CORP. SHMRBURNE, N. \mathbf{Y}.
In Canada: Stromberg-Carlson Co. Ltd., Toronto 4: Ont. Just For Examining Coyne's New 5 -Volume Set tV PICIURE PATTERNS

$\&$ WAVE FORMS

If you want to "go places" in Television and Radio Servicing today, COYNE S New 5 -volume set applied practical radio-TELEvision can help you. It is the most complete. up-to-date set of reference books in America, giving you the practical working knowledge that brings big money. 1500 jam-packed pages full of latest facts on television and radio- 5000 subjects. 1000 illustrations and diagrams. complete secTIONS ON COLOR TV WITh 1951 data on color TV adapters and converters-also new UHF channels. Shows how to install, service, shoot trouble, align all types of radio and television sets. Break-down" photos help you understand quicker. Use this set free for 7 days-get free book of Television Picture Patterns for examining set. See sensational offer below

PREE BOOK OF TV PICTURE

 PATTERNS If You Ac| ATOnce
Here's a sensational "get acquainted" offer. if
you act at once, a brand new tv servicing book, "TV SERVICING WITH PICTUHE TUBE PATTERNS," is YOURS FREE. Shows clozens of actual rv picture tube photos and wave forms with clear explanations of what they mean and how to analyze and service the trouble faster. Now you can get a copy absolutely free just for asking to examine COYNE'S great 5 -volume et APPLIED PRACTICAL RADIO-TELEVISION for 7 days. This offer is limited -mail coupon Now

Service Dealers: DO A

 500,000 tV BUSINESS ON A \$500 INVESTMENTWITH THE

Treamsures

Factory Agent Plan

Why this Plan is BEST FOR YOU:

- You have NO INVENTORY PROBLEM because you work from our MILLION-DOLLAR stock.
- You get SPECIAL PRICES to enable you to undersell competition at a profit.
- You get EXCLUSIVE TERRITORY benefits.

REQUIREMENTS: You must be a Radio-TV Technicion (experienced only); and you must have a presentable business place.

The TRANSVISION TV Line is of the finest quality. Has the famous " A " chassis, housed in beautiful cabinets. 28 models. $17^{\prime \prime}$ or $19^{\prime \prime}$ Tubes.

Write for Details on FACTORY AGENT PLAN today! TRANSVISION, I NC. Dept. RE, NEW ROCHELLE, N. Y.

Receiver is made to be held to the ear.

DOCTOR ALWAYS

 ON CALL
WITH RADIOPAGING UNIT

Radiopaging is the latest comer to the ranks of radio services for the safety of human life. The new service calls a doctor to the nearest phone, wherever he may happen to be. In the past, reports Sherman Amsden, head of the Telanserphone service who originated the new service, many patients have suffered and some have died while telephone answering services liave been frantically endeavoring to locate their doctor's.

Aircall Radiopaging, as Telanserphone calls it, is the answer to the problem of locating a doctor (or any other person) who is temporarily out of reach by phone. The doctor carries a small radio receiver like the one in the photo. This receiver repeats once every minute a series of numbers, one of which may be his special code call. If, during the minute, the subscriber hears his number, he calls his office from the nearest phone. If not, he knows he is not needed at the moment, and can continue his golf game or auto drive with a free heart and conscience.

The little receivers are fixed-tuned to 43.58 mc . Their range is therefore about that of a low-band televiser, though Telanserphone stresses that the area of 160% reliable service extends only $20-25$ miles from the transmitter.

The first station of Aircall Radiopaging', KEA627, is in New York City. Its operation is automatic. The subscribers' numbers are recorded by voice on a $16-\mathrm{mm}$ sound strip on Lucite slides about 6 inches long. These are placed in an ingenious machine known as Mechanicall, a development of Reeves Sound Laboratories. Hung on an endless track, each sound strip is carried past a photocell once every minute. The cell is above the track along the top of the Mechanicall. The box shown in the photo houses the light which shines up through the strip. The long series of up-and-down loops permits stopping part of the track for a few

YOU CAN STILL

Buy-

 TROUBLEPROOF: TELEVISION :THE 630 TV WILL WORK: WHERE OTHERS FALL!:Own the Television Set preferred by more Radio * \star and Television Engineers than any other TV set ${ }^{\star}$ \star ever made! THE ADYANCED CLASSIC 630 TV * CHASSIS.

* With the latest 1951 improvements the 630 TV ${ }^{\star}$ * will out-perform all other makes in every way. * * The 30 plus tube circuit should not be compared to the cheaply designed 24 tube sets now being * sold under standard brand names.

> Greater Brilliance

Assured by the new $14-16 \mathrm{KV}$ power supply.

- Flicker-Free Reception
\star Assured by the new Keyed AGC circuit-no * fading or tearing of the picture due to airplanes, * noise or other interference.
- Greater Sensitivity

Assured by the new Standard Tuner, which has* a pentode RF amplifier and acts like a built-in \star High Gain Television Booster on all channels! * the advanced 630 chassis will operate where mast t other sets fail, giving good performance in fringe. * Areas, and in noisy or weak locations.

- Larger-Clearer Pictures-for 16", 17", 19"* or $20^{\prime \prime}$ tubes
*. Assured by advanced circuits. Sufficient drive ${ }^{\star}$ is available to easily accommodate any tube. * \star - Trouble-Free Performance
* Assured by use of the finest materials such as * quality condensers, overrated resistors. RCA de- \star \star signed coils and transformers, etc.
- RMA Guarantee
- Free replacement of defective parts or tubes \star \star within 90 day period Picture tube guaranteed \star fully for six months at no extra charge!
* PRICE COMPLETE,
* LESS PICTURE TUBE

Net $\$ 169.50^{*}$
*extra clear picture tubes *

Standard Brands

one year guarantee

\star tangular (Blk.)
$\star 17^{\prime \prime}$ Rectangulor (Blk.) $\$ 42.50$ *
19"

* $19^{\prime \prime}$ Round (Blk.)
* $20^{\prime \prime}$ Rectangular (BIk.) $\$ 73.50^{\star}$
tELEVISION CABINETS
* $16^{\prime \prime}$ or $17^{\prime \prime}$ Table Model Cabine
* A gorgeous table model cabinet for the aver- \star * age size living room. Outside dimensions $233 / 4^{\prime \prime}$ * Wide x $24^{\prime \prime}$ High x $24^{\prime \prime}$ Deep. \$44.50 * Walnut or Mahogany \qquad $\$ 44.50$

16" Economy Consolette Cabinet
An exceptional buy in a consolette cabinet * made of fine veneers to hause the 630 TV chassis, \star tube and speaker. Outside dimensions $\$ 49.50^{\star}$

* $16^{\prime \prime}$ or $17^{\prime \prime}$ PERIOD CONSOLE*

Handsomely styled for the conventional living * room. Has a drop-door panel to conceal control
 * are $41^{\prime \prime}$ High $\times 26^{\prime \prime}$ Wide $\times 24^{\prime \prime}$ Deep. $\$ 64.9{ }^{\prime}$ * * Above cabinets avallable for $19^{\prime \prime}$ or $20^{\prime \prime}$ tubes \star * at $\$ 5.00$ additional.

* We are now authorized Distributors for the * famous Masco line of high fidelity Amplifiers, * Public Address Systems, Tape Recorders, Inter, * Catalog.
* All Merchandise Subject to Prior Sale. All Prices * \star Subject to Change without Notice.
RADIO DEALERS SUPPLY CO.
* 154 Greenwich St.

New RCA Theatre Television System projects 15×20 foot pichures of television programs.

Giant size Television"shot Irom a barrel!"

- You've seen television. Now you'll see it in its very finest form-giant projections of special events, transmitted only to motion picture theatres on private wires or radio beams to make movie-going better than ever!

Success of the new system comes from a remarkable RCA kinescope, and something new in projection lenses. The kinescope tube, developed at RCA Laboratories, is in principle the same as the one on which you see regular telecasts. But it is small-only a few inches in diameter-and produces images of extremely high brilliance. These are magnified to 15.20 feet by a "Schmidt-type" lens system like those
used in the very finest of astronomical telescopes.
Because of its size and shape, the new projector is referred to by engineers as the "barrel." It's already going into theatres, where you'll be seeing giant television-shot from a barrel.

See the latest wonders of radio, television, and electronics at RCA Exhibition Hall, 36 West 49th St., New York. Admission is free. Radio Corporation of America, RCA Building, Radio City, New York 20, New York.

REALVALUES!

$\begin{gathered} \text { RT7/APN1 } \\ \text { TRANSCEIVER UNIT } \end{gathered}$	
Used as an altim. eler, it may be con.	Cex
verted for signaling	-m
control circuits, cit-	
izens ${ }_{\text {comple }}$	
tubes and dynamotor O	0
they are in good	
the amazingly low price	56.95

$\begin{aligned} & \text { 20 Ibs. As't radio parts. A } \$ 25.00 \quad \$ 1.95 \\ & \text { value for only. ... } \end{aligned}$	
BC 906-Frequency Meter Rango $150-225 \mathrm{MC}$ with modification possible for lower frequencias of TY. Atc. Contains 0.500 DC microammeter and uses Battory pack of 1.5 Y and 45 $\$ 10.95$ Liko Now-Lass Battarios.	
Endiverivanmitan BC 620 mannele-80 $\%$ 2.a Nou Si4:95 PE 97 Powor Suply for zbove 8.12 vilt vibrator tye FT 250 Mount tor boot BC620 and Prig noi sis. 50	
COMMAND (SGR 274N)EQUIPMENT	
588	
otors-crated Set.	

R18/APS 3 Receiver Amblifier containing cir cults as follows: Blocking oscillator. CRT Eate elr
cuit. Azimuth \& Vertical sween circuit. live stage 30

BC 788 seventeen stake Receiver Transmitter designe for Nadio Altimeter at 430 MC, Contains 3 ht

1D6/RPN4

cathode ray fule and sfluchic anlu all barts except $\{$ smaller tubes and crystat. Used... $\$ 0.95$ ea.
MN 26 Y
Compass Receiver twelve stage superhef covering frequencies of 100 to 3 J KC , 3.S to 695 are brand new but with Dynamotor, Band switeh motor and tubea remored. Schematic Furnished. White Miscellaneous Specials

ARROW SAlHS, Inc.

1712-14 S. Michigan Ave., Chicago 16, 111 .
PHONE: MArrison 7.9374

The Mechanicall equipment reads each wanted code number once every minute.
seconds to take off or put on a slide without stopping the endless procession of slides under the photocell. When the track is stopped, the long loops (normally held to full length by gear weights like the one shown in the photo) shorten as the machine takes up the slack. Thus a portion of the track can be held motionless for 10 seconds
without interfering with the continuous transmission of messages.

At present, Aircall Radiopaging has something over 200 subscribers, each of whom pays $\$ 10$ per month for the service. This includes rental of the small radio receiver, as well as maintenance, should it go out of order during the month.

APPROVED for OUTDOOR-INDOOR Use S 25
Protects Television Sets
Against Lightning and Static Charges

Simple to install everywhere and anywhere . no stripping, cutting or spreading of wires. More than 300,000 in use today SEE YOUR JOBBER OR WRITE TO

TUBES OF THE MONTH

New tubes this month include a cathode-ray tube, a miniature magnetron, and a double triode.

The C-R tube, announced by RCA, is the 7QP4, a 7 -inch direct-view kinescope using magnetic focus and deflection and designed for portable monitor equipment. It has a high-efficiency white fluorescent screen on a relatively flat face and an ion-trap gun requiring a single-field external magnet. The tube takes a small shell 5 -pin duodecal base. Typical operating values are: 8,000 volts on the anode; 300 volts on grid

The new 7QP4, for monitor equipment.
No. 2; -33 to -77 volts on grid No. 1 for visual extinction of the undeflected spot; and 80 ma in the focus coil.
The miniature magnetron Z-2061 is a new G-E development. Using an external permanent magnet, the little tube is for use as a local oscillator for u.h.f. television receivers and other applica-

COLOR! GET YOUR COLOR CONVERSION KIT TODAY!

Midway now has in KIt
 FORM the bosic components for color

 conversion. IN ADDITION we hove a 10 poge illustrated booklet describing the conversion procedures for the RCA $\mathbf{6 3 0}$, HALLICRAFTER and MOTOROLA $7^{\prime \prime}$ set. The information contained in this booklet is suitable for most conversions.WRITE TODAY FOR KIT PRICE Specify Make and Model of your set. Illustrated booklet "E" sold separately for only 50¢.

midiWay $\begin{aligned} & \text { RADIO and } \\ & \text { TELEVISION CORP. }\end{aligned}$

60 West 45th St., New York 19, N. Y. MUrray Hill 7-5053

FOR BETIER TOWFRS AT LOWER COST! Ask about AERO

- COST LESS

Because Aero Towers are aircrafi-designed, lower manufacturing costs offer you a lower price. Lower weight and lower shipping costa are passed on as savings to you.

- Last longer

Coated INSIDE and OUT. DIP-COATED process keep: Aero Tower: Bright and new. Rust resistant. Will not brown.

- EASY TO CLIMB AND SERVICE

Strong electric aircraft welds at EACH loint (not iust one or fwo) prevents tway. Provides sfurdy, safe, ladder-like crosi members.

- QuICKER To INSTALL

Aircraft precision tolerances assure accurate fit of components. Light and easy to erect. Strong durability ossures customer satisfaction.

Jolber Terrifories Open
Dealers-Write for FREB booklet

AERO TOWER DIVISION Knepper Aircraft Service 1018 Linden Street Allentown; Pa .

IT'S YOURS FOR 7 DAYS FREE TRIAL

R. A. SNYDER, General Manager Technical Book Division Coyne Electrical \& Television work... if you want time-saving, money making TV Rodio School pages cover every phase of Television fact-packed charts, diagrams make it easy to understand. All subjects in alphabetical order for quick reference. Prove to yourself that this is the world's handiest, most complete and up-to-date book yet published in Televison by taking advantage of COYNE'S 7 day Free Examination offer.

PICTURE PATTERNS, COLOR TV, UMF, ALIGNMENT, CONVERTERS, ADAPTERS, TELEVISION FROM A TO Z Written by H. P. Manly, (author of the Nationally famous "cyclopedia of is a "must" for every radio-television man. This brand TELEVISION CYCLOPEDIA" flash" why things happen in television receivers-how new book tells you "in a If you want to know about Picture Tube patterns you'll find a complete section on the subject. You get complete information (with dozens of actual Picture Pat terns) on HOW TO USE THEM IN ANALYZING TY SETS. Completely covers ALI MENT, AMPLIFIEISS, ANTENNAS, FREQUENCIES . . . UHF and COLOR TV COnverters adapters, television r-f . . . ion traps and every other Tv subject. Every subject is discussed in A-B-C order with full descriptions and explanations. Mathematics limited to easy arithmetic ... formulas simplified . . .truly television from a to z.

USE THE CYCLOPEDIA 7 DAYS... FREE

See this great "Coyne Television cyclopedia" absolutely FREE for 7 days. Send no money! Just fill in and mail FREE TRIAL coupon. Look the book over for 7 days. But act Now-offer may be withdrastage-or return the book and owe nothing. ut act Now-offer may be withdrawn at any time.

DEPV. 11-71. Chtcace 12, \%L

BRAND NEW 1951 PUBLICATION

THERE'S WHAT YOU GET

 In THIS gREAT CY LOPEDIATV from A te 2 fer
"In a flash" referes "In a flash" refierenco 1951 Pubilictior Shap \& Field Tested Sorvieing Data Dozens of Plctur Tube Patterns
Complete Set of Wave Forms Colap TV and UMF Over 450 Illustations
730 Pares of "How and Why in Practical Yernas

free trial coupon

COYNE ELECTRICRL \& TELEVISION-

RADIO SCHOOL, Jept. 11-T1
SOO 5. Paulina St, Chieago
I'm in. Paulina Sk, Chicago 12, III
I'm interested. Send me a copy of the COYNE TELEVIEIOE CYCLOPEDIA for
days FREE EXAMINATION per your offer.
NMME.
ADDRESS
CITY.
. ZONE
\square Check here if you are enclosing $\$ 5.95$ or wish the book sent COD (you pay the postman $\$ 5.95$ plus COD fee when delivered). You save post-
age. Same 7 day examination and money back satisfaction guarantee . Same 7 day examination and money back satisfaction guarantee
tions requiring a low-power oscillator in the frequency range from 65 to 1,000 me. An external tuned circuit, of either the lumped-constant or distributedconstant type, controls the frequency. Maximum ratings for the magnetron

(i-E's new magnetron is the first of its type to be used in receiving sets.
are: plate potential, 200 volts; total plate dissipation, 3, watts; total cathode current, 30 ma; and heater-cathode potential, 90 volts. The tube has about $250-\mathrm{mw}$ output within its frequency range. At present this tube is available in limited quantities for experimental work, but G-E sources state that mass production will be timed for the FCC's release of the u.h.f. band for television.

Sylvania has released the double triode 6BLT-GT, intended for wide-

The vertical deflection tube 6BL7-G'T.
angle vertical deflection in large TV picture tubes. The tube has two identical triode sections with separate cathodes and has high mutual conductance. It uses an δ-pin octal base.

Typical operating conditions for the 6BL7-GT in a vertical deffection circuit are: d.c. plate potential, 450 volts; cathode bias resistor', 1,200 ohms; peak-to-peak sawtooth input, 36 volts; d.c. plate curient, 11 ma ; peak-to-peak sawtooth output, 270 volts; and peak positive pulse component output, 600 volts.

Basing diagrams for the latest tubes.

NATIONAL FEDERATION NOW BEING ORGANIZED

Formation of a national radio-electronic technicians association was voted at a meeting of delegates from four states and the District of Columhia, held in New York City October 19. After some discussion, the question was put in the form of the resolution: "Resolved that a National Association of electronic technicians' associations be formed," and passed.

A temporary organizing committee was formed, with Dave Krantz, of the Federation of Radio Servicemen's Associations of Pennsylvania (FRSAP) as chairman, Max Liebowitz, of the Empire State Federation of Electronic Technicians Associations (ESFETA). as vice-president, and Norman Chalfin, secretary of the Associated Radio-Television Servicemen of New York (City) (ARTSNY), as secretary.
The next meeting was set for January 28, in Washington, D. C. Messrs. Salinger, of the TV Associates, Washington, D. C., and Fisher', of ARTSNY, were appointed a committee to make arrangements for the meeting. Invitations will be sent to all known radio and television technicians' associations to send delegates to that meeting, at which the permanent foundations of the new organization will be laid.

The New York meeting, at which 31 delegates were present, was the outgrowth of a move to form a national federation initiated at Binghamton, N. Y.. a little more than a year ago by ESFETA, and of parallel action on the part of other associations. Delegates in attendance represented a majority of the New York and Pennsylvania Federations, plus two delegates from the Radio Technicians Guild of Massachusetts, one from Trenton, New Jersey, and one from TV Associates of Washington, D. C

N. Y. HAS LECTURE SERIES

Winter lecture series of the Empir State Federation of Electronic Technicians was inaugurated in late October with a lecture in New York City by John F. Rider. The second N. Y. C. lecture, on November 2, was hy Walter H. Buchsbaum, Editor of the Television Clinic in Radio-Electronics. New York State has been divided into four lecture areas: New York City and Long Island, PoughkeepsicKingston, Endicott-Binghamton, and Rochester.

SURPLUS RADIO CONVERSION MANUAL
\qquad thandard for the most sommonly used trems of surplus elestronic equipment All sonvertlons have haen proven ily tosting on teverat uniss; eech ylelds - useful trem of equipmane, For list

2 latest TECH MASTER NEW"Universal" ACIDC TV KIT

developments! for tubes up to 14

The first low-cost IV Receiver Kit designed for Universal AC-DC operation. Can be assembled in approximately 8 hours with easy - to - follow wiring instructions. Prewired. Aligned I.F "Synchro-Strip" makes further alignment unnecessary.

New unique circuit design features 2-knob control, providing Automatically Synchronized Picture and Sound Tuning. New Horizontal and Vertical Hold Circuits give remarkably steady, clear pictures on all channels. "Beam Power' Audio Output assures excellent tone quality and volume.

Small chassis ($17^{\prime \prime} \times 14^{\prime \prime} \times 41 / 2^{\prime \prime}$) is light in weight (approx. 30 lbs .) and shock-proof, completely "above ground". Tube compleIX2A $12 \mathrm{AT7}, 25 \mathrm{~W} 4,25 \mathrm{BO} 6,65 \mathrm{R7}$ 2-25 6, 6AG5 616, ${ }^{2}$, fier Supplied complete with tubes parts and picture tube mounting bracket less Kine.

N. J. TELECONTRACTORS FORM NEW ASSOCIATION

To protect the public from poor television servicing, 14 service organizations of northern New Jersey have formed the Television Contractor's Association of New Jersey. Managing director of the group is Walter Ferry, former sales manager of D. W. May, G-E, and Westinghouse.
TCA members will be certified and their work will comply with local codes and industry standards. The group will start a campaign to educate the public to the advantages of doing business with members. Set owners are invited to register all complaints with the TCA. If the complaints are justified, the TCA will use legal means to force the offending service contractor to comply with the contract. The suit will be in the name of the person making the complaint, but the association will bear the cost.

Membership in the TCA of New Jersey is open to all TV contractor's who have a place of business operating on at full-time basis. The initiation fee is $\$ 50$ and additional assessments will be made at a later time.

NORTH CENTRAL OHIO HEARS HUGH A. WHITE

The North Central Ohio's Radio and Television Technician's Association heard Hugh A. White, sales service engineer for the Radio Tube Division, Sylvania Electric Products, Inc., at a meeting sponsored jointly by the Association and the Buroonghs Radio Co.

Mr. White discussed six problems of television receiver servicing: comparison of similarities and differences in radio and television receivers; test patterns and their use in frequency analy sis; electrostatic and electromagnetic deflection sweep circuits; direct and indirect synchronizing circuits; and the use of test patterns for testing TV sets. He concluded his talk with a question period.

CORRECTION

The meaning of the third sentence in the first column of the "Television Service Clinic," in the December issue, was altered through transposition of words. This sentence, beginning on the eighth line, should read-In many cases a switch from a 10 - to 12 -inch picture tube can be made without changing the

PUSH－PULL FILM RECORDING Patent No．2，511，199
John G．Frayne，Pasadena，Calif
（assigned ta Western Electric Co．，Inc．）
This is an improved recording system for class bilateral push－pull tracks．In a class B variable wea track．the film positive is almost completely phatue during silent periods．This reduces noise level．The bilateral push－pull feature requires two parallel tracks．Each track records and reproduces alternate half－cycles of the fundamental fre－ quency．

simple aperture is nsen in this new systen． A stady light sulure is foctsed through the aper－ wre to expose the moving film．See part＂a＂of the disure．The beam is morlulated by metal rib－ trons arranged 10 viluate in fiont of the aperture． The center ribbon is in a plane just in back of the uther two so it can move without clashing with them．The ribtoms are in a stong magnetic fied and the current from an at．amplitien flows
through them．
Nomatly the ribums are adiacent to each other that almost all light is masked off．At some nayticular instant while sound is impressed on microphone M．curvents may flow through the ribtons as shown by vertical armows in pat of the figure．There is a reaction between the marnctic fiell and these emponts which sets the ribbons in motion．At this particular instamt the filthons may send to move in the direction of the hori\％ontal arrows（part＂b＂）．Ribbons＂A＂and ＂B＇overlan and nask otl all light from the track （in）the left．＂ B ＂and＂ C ＂separate and expose the rack on the right．As these ribbons vibrate they moduce an area such as＂D＂in part＂ C ＂of the diagram．
During the next lialf－cycle，libbons＂B＂and －$C^{\prime \prime}$ werlap and mask off the light bean．At the same time＂A＂and＂B＂move apart and pooluce an al＇ea such as＂E＂at＂ c ＂．Comulete modula－ tiom results when each ribbon moves a distance whal to one－fourth of the aperture length．
Resistor R enuatizes the ribbon currents so that the andio signal current flowing through ribbon ＂Fs＂will have the same value as the current in We other two riblums，but flow in the amozite

No sound？No picture？Well－is your set plugged in？＂

SWEDGAL＇S＊D．

 SPEAKERS $\begin{gathered}\text { Alnico } \\ \text { Fresh Stock！Magets }\end{gathered}$

PORTABLE AMPLIFIER CASE At A New Low Price！

JEWEL LIGHTS
Nimiature bayonet socket，green
Jewel：15／10＂moun ing liole Vasy

IF TRANSFORMERS
Midget Iron Core 4.0 liC，input or output，ea．．．．．．．．．．．．．．39

KITS！ $\begin{gathered}\text { Drop to } \\ \text { New Low Price }\end{gathered}$ CARBON RESISTOR KIT： 50 asst． Lill corled insulated resistorg rith
 2－TUBE PHONO OSCILLATOR

，	18	$\stackrel{\text { All }}{\text { Brand }} \text { New! }$	
25 c Ea．	8	u， 315	1：1il
いikj	39c Ea．	＊iAT＊	2014
515	11.	6iS	69 c Ea．
290 EA．	［iis	6 Cl	\％1．1
1V	711\％	HR27	リッざ
Hibl	－1		23.6
12.18	12． 6	59 C Ea．	79 e Ea
1走	12	1A．	11ざ，
${ }_{90} 127$	2071	105	\＄1．34 Ea．
\％	490 Ea．	$\mathrm{BSA}^{\text {a }}$	61btifici
\％ 8	1 TH	fisc ${ }^{\text {？}}$	191：66\％

 POWERTRANSFORMERS 6OA：$\because=16.13-1$ POWERTRANSFORMERS 9.12 Pri．${ }^{11}$

 ISOL
heat
so KIT．Complete with schembit ic dia

ORDER THIS PORTABLE AMPLIFIER CASE TODAY AND GET THIS 3－TUBE CHASSIS FREE！

SWEDGAL RADIO，INC．

FIDELITY ANGLE DISPERSION appearance

TORQUE MEASUREMENT

Patent No. 2,511,178
Herbert C. Roters, Roslyn, N. Y.
lassigned to Fairchild Camera \& Instrument Corp.)
This incention is baseal on a marnetortrictive effect. The rool R made of a magnetic $m^{2}+t e r i a l$ such as nickel allog is fixed to a plate P. At the other ent of the rol a dise D is aranged to carry a weight W.
The rod is magnetized by a.c. flowing through it. This curvent is indicated as I. If the weight. is taken off. there is no torque on the rod. Ender this condition I produces magnetic lines of furce which are circular atound the rod. Since there is no component of marnetism parallel to the rool. no flux cuts the coil of wire and the meter M shorws no deflection.

When a torque is wesent, the circular magnetism is distorted anel the Ilux lines become helical around the rod. This is known as the inverse Wiedeman effect. This magnet ic combunent parallel to the rod induces ace. inta the coil and M deflects. The induced current is directly proportional to the torque on the rot.
This effect is useful in many ways hecanse it permits measurement of a force which does not produce actual motion.

RAILROAD SIGNALLING SYSTEM

Patent No. 2,509,33I

Paul M. Brannen, Duquesne, Pa.
(assigned to Union Switch \& Signal Co.) Adding to the safety of railroal travel, this insention is an imp wement over the usual bluck signal system becallse it indicates actual distance between trains. The illustration shows two trains: A and is running in the same directom on the same track.
The first cal of A is equipped with the apbaratus shown on the right. A keyer molulates the transmitter. It also controls the sawtouth generator which provieles the horizontal sweep for the oscilloscone. The transmitter radia+es pulses at a high flequency Fl .

The last car of train B is equipred with receiver and transmitter as shown on the left. The pulses from A are picked up and passed un to the transmitter which re-radiates them on a second high frequency F2. Train A picks up the signal which appears as a pip on the oscillosconte. As in radar the exact distance between trains is indicated on the screen.
This equipment has been found effective at alistances up to about 3,000 yards.

SECRET REMOTE CONTROL

Patent 2,513,342
Charles J. Marshall, Dayton, Ohio. lassigned to the United States of America os represented by the Sec'y of the Army) Renote circuits are here controlled by radio (1) insure secrecy and prevent operation due to false or interfering signals. As an example, bombs may be released from several aiplanes simultanecusly by a squad learler. It is obvious that the circuits must be guaded against random noise or *nomy transmitter signals.
The transmitter and receiver may be convendional equipment. The transmitter is located at the control point. It is modulated by two audio frequencies when the switeh is thrown.

At each receiving location separate narrowband filters are tuned to the modulating frequencies. Their output is amplified and connected to relays RY1 and RY3. A third channel. tuned to 1,000 rycles, feeds RY2. Note that this relay is normally rlosed.
When the control switeh is thrown, RY1 and RY: contacts are closed. If now 1 ,(100)-eycle signal is present, K 2 remains closed. The work circuit, for example a bomb release, is operated. If random noise or a voice signal is intercepted, it is quite likely to include $300,1,000$, and 3,000 cycles. In that case all ther relays will operate. Since the RY2 contacts will opm, the work cirenit does not function.

NOISE SUPPRESSOR

Patent No. 2,512,637
Richard E. Frazier, Doyton, Ohio. lassigned to the United States of America as represented by the Sec'y of War) As the noise ampliturle increases, this suppresw, shown within a dotted box becomes increasingly effective. The diudes may be within a single lube envelone or they may be twin metallic rec-
ififiers. The sunpreson in connected across an fifier. or i.f. circuit.
C 1 is chosen for low reactance at signal fre quency. 12 is relatively large. The time constant oif the combination $\mathrm{K} 1-\mathrm{C} 2$ and $1 \mathrm{l}: \mathrm{C}$ - 3 is much higher than the perioll of the signal. RF ORIFAMPL

The input polarity determines which of the dioves conducts. With normal r.f. (or i.f.) signal lwth diodes conduct. C 2 and C 3 charge to an average notential and slowly discharge hrough their respective resistors. The capacitor charge is opposite and nearly equal to the constant signal input so there is little loss by shunting through the tubes. In the presence of a noise pulse, either D 1 or D 2 conducts more heavily. Temporarily the input exceeds the average capacitor potential and the input is effectively shorted to ground.

FOR ALL TAPE

 RICORDERS
MAGNERASER*

The Perfect Bulk Tape Eraser
Provides complete 100% tape erasure on the reel - without rewinding. Portable, light weight, fast, easily operated. Guaranteed to erase tape 3 to 6 db . quieter than unused tape! Also demagnetizes record and erase heads. Size: 4" Diameter; 2" High. Weight 3 lbs. Operates from any AC outlet.
Net Price $\$ 18.00$ (Includes of ft . line cord and plug)

Premium Recording Tape

Magneribbon assures consistently high recording quality. Wider response range; low surface noise: higher output level; greater strength. 1200 ft . lengths on 7 " diameter tempered aluminum reels.
Plastic base tape (red ar black oxide) Per reel $\$ 3.95$ Paper base tape (red or black oxide) Per reel 2.55 Special introductory pask age offer (1 red plastic; 1 blask plastic; 1 red paper; 1 black paper) $\$ 11.80$
Order direct from factory, or send for descriptive sirculars.

- Trademark Reg.

AMPLIFIER CORP. of AMERICA, 398 BROADWAY, NEW YORK 13, N. Y.

EXPFERT

with OSCILIOSCOPES

This practical book tells you everything you should know about an oscilloscope! WHAT it is DO ... and HOW to use it properly
ENCYCLOPEDIA ON CATHODE-RAY OSCILLOSCOPES AND THEIR USES
by John F. Rider and Seymour D. Uslan
The FIRST and ONLY book that so fully and clearly describes the 'scope. its construction.... its capabilities... its applications in servicing, engineering, research ... with thousands of time-saving and labor-saving references, charts, waveforms, etc,
 All oscilloscopes produced during the past ten years, a total of more than 70 different models, are accurately described-with spec ications and wiring diagrams. Planning to buy a 'scope? This book will heip you select the type best suited to your needs! If you show you how to increase your instrument's usefulness and, naturally, its value to you!
We GUARANTEE that it will SAVE and
EARN many, many times its cost for youl 992 Pages - 500,000 Words - 3,000 Illustration $1 / 2 \times 11^{\prime \prime}$ Size 22 Chapters. Completely Indexed Easy to Read - Cloth Bound And only $\$ 9.00$

with ANTENNAS

TV and OTHER RECEIVING ANTENNAS

(Theory and Practice)
Tells you ... WHAT each type can do How to use it . . . and Which is best!
This is a text book on all types of receiving antennas. If you have any questions-you'll find the answers in this book! Teacher, engineer, stu. dent service technician-all can use this text. WE GUARANTEE IT! Antenna data never before published anywhere will be found in it. And it's readable-be. cause mathematics has been translated into charts and graphs.
Everything you hoped for . . . and asked for! 606 Pages . . . 310 Illustrations And only $\$ 6.00$

at TV INSTALLATIONS

Stop wasting time, patience, and mone in trying to "dope out" those difficult TV installations!
TV INSTALLATION TECHNIQUES

Order this RIDER book, the ONLY text that gives you complete information on all the mechanical and electrical considerations.
KNOW the absolute facts about such things as ice loading, wind sur. face, and mounting requirements whether for short chimney-attached mast or an 80 ft , tower, including foundation.
HAVE at your fingertips, accurate data on receiver adjustments in the home . . . municipal regulations governing the installation of TV antennas and masts in all of the major television areas in the U. S.
SURE to help you wherever and whenever an instal. lation becomes a problem! A TIMELY and IMPORTANT book!
336 Pages - 270 Illustrations - 55/8 $\times 85 / 9^{\prime \prime}$ Size Cloth Bound.... \qquad And only $\$ 3.60$
10.DAY MONEY-BACK GUARANTEE-Make these books PROVE their valuel Unless you agree they are the best investments you've ever made-re turn the books, in good condition, for refund. JOHN F. RIDER PUBLISHER, INC.

480 Canal Street, New York $13, \mathrm{~N} . Y$ Please sent me the follou ine homs on sour pooday - ENCYCIOFFIIS ON CATHODE-RAY

Name

Address

City
Zone. State
SAVE POSTAGE. If you enclose clueck or money order WITH coubon, we will prenay bostage charg
Money back if you return books withill 10 days. \square Check Encl. \square Money-Order Encl. \square C.O.D

FUSE FOR RECEIVERS

A fuse to protect the rectifier tube and power transformer in case of shorts. in the high-voltage supply is worth while in all receivers and is almost a necessity in experimental equipment where there is the added risk of overloads.
The easiest fuse to install and replace is a simple pilot lamp. The 150-ma

screw type is best in most equipment but an ordinary flashlight bulb will give sufficient protection. Simply wire the socket in series with the center tap of the high-voltage winding of the power transfomer in series with the plate or cathode of the rectifier in a transformerless receiver. The drawings show where the bulbs may be inserted.-Eric Leslic

BUILT-IN TV ANTENNA

Constructed of 300 -ohm ribbon line and designed for installation in TV receiver cabinets, this all-channel antenna is described in U.S. patent No. 2,514,992 , issued to Charles R. Edelsohn.

The system consists of a high-band folded dipole A and transmission line

AJTOMATIC M-90 AUTO RADIO

- Six Tube Superheterodyne - Three Gong Con. denser - Powerful Long-Distance Reception Fits All Cars. Easy Installation
- Mounting Brackets Included Net
- 6 Tube model M90
$\$ 30.11$
- 5 Tube model X50 $\$ 28.21$

MAIL US YOUR ORDERS
All orders filled within 24 hours Illustrated parts

 y information - when you need it. Com plet your RIDER MANUAL Library now. RIDER MANUALS-PROYEN BEST BY 21 YEARS OF TEST

> In TELEVISION 5 RIDER TV MANUALS $\star 10,544$ Pages $\star 1,849$ Models + Equivalent of $91 / 2 \times 11$ ins. slae

RIDER P.A. MANUAL
 * 2,024 Pages * 1,285 Models

IMAM-FM-Auto Radio-Phono
 21 RIDER MANUALS $\star 31,382$ Pages *28,341 Models

These comprise the warld's greatest compilafion of ACCURATE - AUTHENTIC - RELIABLE Servicing Information . . . as furnished by the Service Departments of the Manufacturers themselves. And all of it is yours . . . at the astonish ingly low cost of LESS THAN Ic PER PAGE!

EXTRA

feature that is exclusive with RIDER TV MANUALS

CIRCUIT ANALYSIS . . . descriptions of important functions within the receiver . . . pertinent data originating from the manufacturers and presented by RIDER in a manner which makes this added information a valuable aid to the servicing fechnician - as well as a practical education in the actual design of television receivers.
John F. Rider Publisher, Inc. 480 Canal Street New York 13, N. Y. Sce Your Jobber For RIDER MANUALS PROVEN BEST BY 21 YEARS OF TEST

B-1) with a half-wave shorted stub C inserted in one leg. The stub, being onehalf wavelength at the frequency of dipole A, has no effect on the performance of the transmission line or antenna at that frequency.
On the low land, the combined length of stub (c, the 3 -inch line B, and antenna A form a folded dipole for the low band channels. Section D of the thansmission line is not symmetrical so it should be kept short. A length of 4 inches is satisfactory

HALLICRAFTERS 745 TV SET

Early production models of the Hallicrafters model 745 and similar sets use the a.c. input circuit shown at "a" in the drawing. The r.f. chokes in the a.c. line are wound with wire of approximately No. 24 gauge. The voltage drop is approximately 2.5 volts across each choke. This loss in line voltage affects the performance of the set when line voltage is low. Furthermore, these chokes burn out or open when circuit troubles cause excessive

mimary current. A shorted damper tube, low-voltage rectifier tube, filter capacitor, or coupling capacitor to the horizontal output tube can cause this trouble.
Performance under low line-voltage conditions is improved and the power transformer protected against shorts and overloads by replacing these chokes with 3 -ampere Slo-Blo pigtail fuses as shown at "b."-Hubrit L. Frwaite

VIBRATING TV ANTENNA

The reflector of $m y$ TV antema would vilorate when the wind was high. This vibration could be felt all over the house and caused an amoying roise.
l cured the trouble by tying a piece of wire from the ends of the reflector to a point on the boom behind the radiator. This did not affect the picture and the antenna seemed to pick us less noise.A,thue Schweitzer
(Using wire as a tie-down may affect the performance of some antemas. If it does, tiy using prestretched mylon cord or rope.-Editor)

BE YOUR OWN BOSS!

MAKE MORE MONEY
Sitiois
25^{c} ens of proftable tested
meil order plans, conBidential business con-
eot crets. dozens of prac-
tical tested formulas. thcal tested tested
successful - actual ex-
schemes 40.000 WORDS
$\xrightarrow[T E X T]{1 N}$
 NO ADS $\begin{aligned} & \text { U. } \mathrm{S} \text {. stamps, monty } \\ & \text { ordier, oo toin. }\end{aligned}$

 taining hundreds of TV-RADIO Facts-Ldeas nimain

NEVEREEFOAK PLAHA
NEVERADNIN
ANEFFERLIKETMIS
The greatest history-making offer in our 15 years: Your chance to get int h t b can't afford to pmss this vp' Just magine! You buld and KF.EP beautiful grant acreen TV SET...build and kee, 6 tube superheterodyne RADIO. We gnve vosu pro-
fessional MLETITESTER you can use in your own ervice stop PLt more than 12 other valuable kuts: Also. you get amazing shop-type "learn by doing" training developed by world famed electrome (C 保ts a great new method that has heen
 placed THOUSANDS OF MFN in hugh-pas ing RADIO and TV jobs or un busi ness! Graduates in U.S and Fompo cot tries state CETI easy-to-learn lessons VESTIGATE TOLAA

CAIIPRNIA ELECIRONICS \& TEIEVISION INSTIIUIE

TELEVISION RECEIVER- $\$ 1.00$

 CERTIFIED TELEVISION L.ARORATORIES bept. C. $5507-131 \mathrm{~h}$ Are., Brooklyn 19, N. Y.

HATRY \& YOUNE OUTSIANDING JOBBER Lawrence, Inc.

PEN-OSCIL-LITE

Extremely convenient test oscillator for all radio servicing: alignment
powerad . Range from 700 cycles audio to over 600 meqacycles u.h.f. Output 1 rom zero to 125
write for informati
GENERAL TEST EQUIPMENT 38 Argyle Ave. Buffalo 9, N. Y.

shoot T'I trouble FAST!

With H. G. CISIN's RAPID
'TV TROUBLE SHOOTING METHOD"
FARS more mone: lacate television troubles by this quick, entirely wru method. Raرlid checks applied in sinmpe, logical stens enable you to classify, sub-clatsify, diagnose and locate all faults in recod-breaking time regard less of make or model!
H. G. CISIN in well-knom to radionand tele
 sumts of tele ixion twhiticans, mans of them now

IMCREASE your earning power with thas mant valuable ajul to 'TV' servicing mrifell. SENI) YOCR NABE AND FOR YOUR POSIPAID (OPY.

RUSH COUPON NOW! 200 CIINTO-CONSULTING ENGINEER
Enclosed is s__for which please rush_copies | (postpaid) of your TV TROUBLE SHOOTING| method.

MAL

Money Back
Guarantee
NATIONAL PLANS COMPANY
1966 B BROADWAY, NEW YORK 23, N. Y

Beyond Compore-The Antema that created New Horizons in Television Reception

NEW! dowelled dural elements adD strengit and dampen vibraTION - EXIRA-HEAVY DUTY CON. STRUCTION THROUGHOUT

THE FINEST TELEVISION ANTENNA EVER MADE!
Manufacturd by Telrex and selected Telrex licensees under Paf. No. 2518297

The original Conical-V-Beam that reached beyond the accepted limits of usable reception and produced satisfactory pictures in areas where reception was considered impos. sible. For maximum TV profits install the antenna that increases your selling area by producing excellent pictures where others fail. Telrex De Luxe is your one best bet for every TV installation near or far. It outperforms, outsells any other antenna at any price! For complete information, contact your local Telrex distributor or write direct for details and new catalog.

DEALERS, INSTALLATION MEN-WRITE TODAY
Receive your free copy of the Telrex Service News every month. Contains timely tips on IV installations and other trade topics. Please write on company letterhead to Department B.

Greylock's NEW TELEVISION
 \& ELECTRONIC CATALOG

- Great Money-saving Values for YOU
- Barcains you can't afford to miss
- More than TWENTY Standard Brand lines of Merchandise

TODAY

GREYLOCK
115 Liberty Street New York 6, N. Y.

TV-RADIO SPEAKER COUPLING
Tonal quality of the average table model TV set is often unsatisfactory because of the size and placement of its speaker. This circuit shows how the a.f. output of a TV set can be coupled into a console FM or AM radio to take advantage of the larger speaker and better baffing. The circuit is arranged so the speaker is coupled to the set that is in operation.

Replace the output transformer in the TV set with a husky universal type. Select the secondary taps to match the impedance of the large speaker or use those which provide the best tone. A small a.c.-d.c. type power supply is inOUT TRANS (2)
$\xrightarrow{\text { IV SET }}$

stalled in the console to supply excitation current for the change-over relay. This supply develops approximately . 00 volts d.c. R 1 and R 2 drop the voltage to between 2.5 and 3.5 for the 8 -volt relay. Any small s.p.cl.t. relay requiring not more than 90 volts can be used by making appropriate adjustments in the values of R1 and R2.

If you pick up a surplus relay, be sure to check its resistance and find out how much current it draws before installing it. Some low-voltage jobs have a low-resistance coil which may draw an ampere or more. Make sure that the current drain can be met by the power supply.

The diagram shows that the speaker connects to the TV set through the normally closed contacts of the relay The relay is energized and the speaker switches over when the console set is turned on.-Olaf IV^{\prime}. Bailey

SIMPLE TIMER CIRCUIT

This darkroom timer is simpler than most electronic timers. With the controlled unit plugged into the receptacle. throw S 1 to OFF to remove any residual charge on C1. Throwing S1 to os removes the $1,000-$ ohm short circuit from C1 and at the same time energizes the output receptacle through the normally closed contacts of the relay. C 1 begins to charge up through R1, R2, and R3. When the voltage across C1 reaches 100

or so, the 0A3 fires, allowing C1 to discharge through the relay and pull in its armature. The normally open contacts lock the relay closed by shorting $R 2$ and $R 3$, leaving only $R 1$ in series to limit the current to approximately 30 ma . The normally closed contacts are then open, and the output receptacle is de-energized. The cycle is repeated by throwing S 1 to OFF and then to ON each time the controlled unit is to be operated. S1 may be a push button if desired. RY1 must be a lowresistance (several hundred ohms), low-current relay with a light armature for fast operation. If a relay with the indicated contact arrangement is not available, a s.p.s.t. sensitive relay may be used to control a more rugged relay with the necessary contacts. The $1,000-$ ohm resistor prevents a spark at the contacts when the switch is thrown to off. R2 limits the maximum current through R3. The values of R3 and C1 shown cover a range of approximately 3 to 30 seconds, but other values could le used for different times. C1 must be dairly large so that the relay will close positively when the 0A3 fires.Richerd H. Houstom. W3.MAX

NOVEL CODE OSCILLATOR

This code oscillator uses a modified multivibrator circuit which gives it a richness of tone easy to listen to throughout long practice sessions. C1 governs the range of frequencies covered by varying the setting of the 500,000 -ohm potentiometer. The frequency and signal voltage go up as C1 is made larger. When it is 0.5 uf, the range is approximately 700 to 1,000

cycles. The $50-\mu \mu \mathrm{f}$ capacitor is shunted across the secondary to improve the tonal quality at low frequencies.

The audio-frequency transformer can he any interstage unit that has a step up ratio of three to one and a center tap in the secondary. The frequency will vary somewhat with the size transformer used, but C1 can be selected to give the desired pitch.

The selection of tubes is not critical. The diagram shows pentodes which may be 6L6's, 6V6's, 117L7's, 50L6's, and the like. You can use triodes such as 6C5's, 6SN7's, etc., by omitting the connection for the screen grid. In fact, you can use one triode and one pentode. The circuit will work just as well.Arther Manning

To Ambitious Young Men Who Want Profitable Careers

CREI Residence School Trains You for Vital Industry -qualifies you for better jobs in the Armed Services too!

Whether you're seeking a career in the electronics industry, where critical shortages of trained men exist, or planning on entering military service, one thing is sure: If you are qualified in electronics, you're qualified for the better jobs. Radar, communications, guided missiles, and television work not only offer present employment at high pay-they are keys to lifetime careers.

Residence School training in Washington, D. C., at CREI arms you with a priceless asset - electronics know-how!

Recognized as outstanding by engineers educators, the Armed Services, and important firms like RCA-Victor, Bendix and United Air Lines (whose technicians have received CREI training at company expense) your electronics course can be completed in approximately 20 months New classes start twice a month. You work with the latest facilities in modern classrooms, studios, and labs. To insure your training act now. Send for FREE catalog today.
APPROVED FOR VETERANS

CAPITOL RADIO engineering institute

An accredited tecbnical institute founded in 1927.
16th Street and Park Road, N. W., Dept. 301C Washington 10 , D. C.

Please send FREE Residence School Catalog 301 C
Name
Street
City............................. Zone............. State.

Veteran \square Non.Veteran \square Age
\square Send details about Home Study Courses

NOW better, brighter pictures insuline new "BICON" TELEVISION ANTENNA

Single Type and Stacked Array for fringe areas
An engineering triumph by Insuline . . .
proved outstanding by actual test. Preassembled sections for quick installation.

* Peak ALL-Channel reception.
- Suitable for ANY make TV set.
* Exclusive-separate High Frequency and Low Frequency dipole-reflector ele ments
- Popularly priced.

FREE! New Catalog

Thousands of items including metal goods. radio parts. TV indoor and outdoor an tennos and accessories, tools, hardware, etc. Write Dept. RE-I.

BASIC OSCILLOSCOPE

$?$ Plcase print a circuit of a 5 -inch oscilloscope, minus amplifiers, and with provisions for intensity modulation. I have a $5 C P 1$ C-R tube, 2X2 rectifiers with heater trensformers, and a 2,200volt, 2-ma high-voltage transformer. I want to use as many of these parts as possible.-J. A., Ames, Iona.
A. This basic oscilloscope circuit is taken from tentative data on the 5CP1 supplied by RCA. If the voltages supplied by the 2X2's are higher than those shown on the diagram, insert suitable dropping resistors at points

A and B. The 50-megohm resistor in the positive supply may consist of five 10 -megohm, 1 -watt resistors connected in series. The filament transformers for the 5CP1 and the 2X2's should be insulated for 2.5 kv or higher.
Take care not to exceed the maximum positive and negative voltage ratings for grid No. 1 when intensity modulation is used. Resistor E_{2} limits the positive excursions. Its value should be at least 2,000 ohms for each volt of positive signal voltage.
Dangerous voltages exist in the C-R tube circuits. Pull the line cord, throw

the line switch to OFF, then short the terminals of both high-voltage filter capacitors before working on the set.

ANTENNA MATCHING SYSTEM

? I have an all-channel antenna which does not work well on channel 18 so I want to connect a channel-13 antenna in parallel with it. How can I connect these 300 -olm antennas so there is no interaction between them. Shouldn't a 150-ohm line be used?S. R. M., New Yorl, N. Y.
A. Mount the antennas 18 to 24 inches apart. Connect them together with a 48 -inch piece of 300 -ohm line. Tap this; line 12 inches from the high-frequency antenna and connect a $300-\mathrm{hm}$ lead-in at this point. Connect a 12 -inch open stub (made from 300 -ohm line) across the terminals of the larger antenna.
Being approximately a quarter wavelength long at channel 13 , this stub will short circuit any high-frequency signal on the low-frequency antenna.
The 36 -inch line between the longer antenna and the antenna terminal block acts as a three-quarter wavelength stub shorted by the longer antenna so it presents an infinite impedance to high-frequency signals arriving at the lead-in from the smaller antenna.
The impedance of each antenna is 300 ohms only at its resonant frequency. In wide-band antennas like this one, $: 300-\mathrm{ohm}$ lines are used to provide a good match between the lead-in and the set.

HOIST YOUR PROFITS

with a JIFFT-IP Mutrullia IIISTI!

Two men can du the work of six in far less time. Eliminates the neressity of a hiy erew. Means loner costs. higher profits and savings in valuable time. All this ean be achieved in your TV installations with a JIFFY-LI' Antemat Hoist. Eiery dealer who installs TJ antembas needs a JIFFI-LTP Hoist.

1. Works on that or gable romis.

 off in low lhan is minuter.
2. Antemna can he lowered at any time by fastomine the hoisl lo the noulut.
5) Will ereel or lower mast. if to 50 high.
6. Antemat masl can lee selfeguyed . . . takes onle whe man t" crank it ul.
7. Sturaly in con-l mution-lieht in weight.

JIFFY-LP IIOIST-Dealer net. . $\$ 49.50$ "Pats applird
 If your jobber ramot supply. order dircet from

THE HAUGEN CO.

412 South Fromt St., MANKATO, MinNESUTA

SAVE

THAT GOOD LOOKING OLD CONSOLE-

REPLACE THE OBSOLETE RADIO

with a modern, easily installed

ESPEY AM/FM CHASSIS

and your favorite console is "right-up-to-date"

Rated on excellent instrument by America's foremost elec. tronic engineers. Fully licensed under RCA and Hazeltine patents. The photo shows the Espey Model 511-B. sup. plied ready to play. Equipped with tubes. antenna, speaker and all necessary hord. ware for mounting.
NEW FEATURES—Improved frequency modulation circuit, drift compensated - 12 tubes plus rectifier, electronic tuning eye and preamplifier pick-up tubes - 4 dual purpose tubes - High quality AMFM reception - Push-pull beam power audio output 10 watts. Switch for easy chonging to crystal or variable reluctance pick. ups - Multitap audio output transformer supplying 4-8—500 ohms.

BC-222 CONVERSION

? I have a BC-222 radio set which I wish to convert to a signal generator. Please prepare a diagram showing how this can be done. I would also like to have an a.c. power supply.-C. M. E., Graham, N. C.
A. The diagram shows how the unit can be converted to an a.c.-operated signal generator. Components shown with codes are those found in the $\mathrm{BC}-222$. Parts having values given must be added. The tone of the modulator

can be varied by using other resistances in place of the $680,000-\mathrm{ohm}$ resistor in the grid circuit of the 33 .
The power supply consists of two 6.3-volt, 3 -ampere filament transformers connected back-to-back. The secondary voltage of the input transformer is rectified by a Mallory type 1 B 8 R rectifier or its equivalent. Adjust the 5 -ohm resistor so the filament voltage is 2 volts under load. The filaments in this circuit must be d.c.operated so the generator output will not be hum-modulated.

"No, bring the antenna further back on the roof. A little further. More. Hello? Hello?

TUBE VALUES

Guaranteed New-Branded

1 C 6	88	155	. 89	6K7	. 48
167G	. 88	114	. 98	6K8	. 78
105GP	. 96	1T5GT	. 78	6 L 7	. 78
1076	. 88	2V3G	. 98	6L7G	1.16
108GT	. 94	344	. 36	6N7	. 78
1E5GT	1.38	387	. 35	6R7	. 78
1E7G	1.56	3D6	. 34	6SD7GT	. 68
$1 F 4$. 74	305GT	1.10	6SF5GT	. 89
1F5G	. 74	354	. 98	6SG7	. 98
1F6	1.56	5 T4	. 88	6SH7	. 48
1F7G	1.56	6A3	1.28	6SJ7	. 80
1G4GT	. 68	646	. 88	6SL7GT	1.20
1 G6GT	. 68	6 A7	. 68	6SR7	. 56
1 H4G	. 68	6 AB7	. 78	6S\$7	. 89
1H5GT	. 53	6AD6	. 88	784	. 56
1H6G	. 86	6B5	1.56	7B5	. 72
1 J6GT	. 88	687	. 88	786	. 58
144	. 54	688	. 88	7C5	. 56
1 LA4	. 78	6B8G	1.28	7C6	. 72
1 LAG	. 88	6 C 5	. 46	1246	. 18
1LB4	. 88	6 C 6	. 56	12 K 8	. 58
$1 \mathrm{LC5}$. 78	6C8G	. 68	$12 \mathrm{SH7}$. 34
$1 \mathrm{LC}_{6}$. 56	606	. 46	12SL7GT	. 58
1LD5	. 78	6F7	. 84	12SR7GT	. 48
1 LE3	. 88	6G6G	. 88	19	. 97
ILG5	. 88	6J5	. 75	76	. 38
1LH4	. 64	6J8G	1.28	9001	1.00
1 LN5	. 66	8K5GT	. 98	9005	1.90

TRANSFORMER BARGAINS!

2500 V.-4 MA Filament
2.5V-5A, 7.5V-4A
 5V-10A
5 V.C.T.
官A
6.3V-3A
Three 6.3 V.C.T.
®A each Three 6.
$6.4 V-8 A$
$7.5 V-5 A$
$40-0.40-250 \mathrm{MA}-5 \mathrm{~V}$-3A
1.29
 175.0.275—70 MA - 5 V-5A 2 $5 \mathrm{~V}-10.10 \mathrm{BA} 2.15$ 325-0.325-40 MA.-5 V.C.T.-2A 2.5 V. \dot{C}
 350-0-350-70 MA.-5V-3A, 6.3V-3A $\begin{array}{ll}350-0.350-100 \mathrm{MA} .-6.3 \mathrm{~V}-6 \mathrm{~A}, \mathrm{6}, 3 \mathrm{~V}-2 \mathrm{~A} . . & 3.25\end{array}$ 807 to P.P. 6L6 .. From 200.500 ohms to 5, 6, 7. 8, 9, 10K ohms at 150 MA.
Driver Xfmrs.
200, 10,000 ohm P. to sing
10,000 ohm P. to single G. 89
P.P. 45, 2A3, etc. to P.P. 210, 801, etc... 1.95
P.P. 6L6, 2A3, etc. to P.P. grids 1.65
P.P. par. 2A3, 45, etc. "AB'" to 4, 8, 15, 500 ohms
6V6 to $2,4,8$ ohms

600 Input
600 ohm C.T. to 300 ohm mike.
. 51.49
From and to $50,125,200,330,500$ ohms. $\$ 2.49$
30 ohm mike to 600 ohm C.T. Bal. line... 1.65
.87
2.5
2.5
4
8
10
40
10
12
15
15
20
HY.
HY.
$H Y$.
Chokes

2.5 Amps.	$\$ 8.95$
4 Amps.	8.95
130 MA.	1.10
40 MA.	2.25
200 MA.	3.49
180 MA .1	2.49
$90 \mathrm{MA}$.	1.75
200 MA.	1.60
150 MA.	2.65
125 MA.	1.75
200 MA.	

IMPORTANT NOT|CE: Minimum Order $\$ 5$. Quantity prices on request. All items in stock nowsubject to prior sale-prices subject to change without notice. 20% De-
posit with orders unless rated. All prices F.O.B. our N.Y.C. Warehouse

FJR TV ASSEMBLIES \& CONVEASIONS

PICTURE TUBE MOUNTING BRACKETS FOR $\# 630$ FOR $121 / 2^{\prime \prime}$ PICTURE TUBES

BROOKS RADIO \& TELEVISION CORP. 84 Vesey St., Dept. A, New York 7, N.Y.

VIDEO I.F. ALIGNMENT

The test pattern from a local TV station can be used as a convenient signal for aligning the video i.f. circuits of a receiver having separate video and sound i.f. amplifiers.

The vertical and horizontal linearity of the receiver should be good. Turn on the receiver and allow it to warm up before beginning the adjustments. Make sure the set is adjusted for sharpest focus, then adjust it for normal contrast. Beginning at the converter output, peak each i.f. stage for best separation and resolution of the lines in the vertical wedges of the test pattern. A complete alignment of the system will result in maximum picture definition and horizontal detail with minimum distortion and smear.-Olaf W. Bailey
(If the set has a.g.c., disable it, replacing it with a negative bias of about 3 volts. Bias should be adjustable. A $10,000-0 \mathrm{hm}$ potentiometer across a 4.5 -volt, C-battery will do the job nicely. -Editor)

WESTINGHOUSE H-600T16

Weak sound accompanied by picture shrinkage is often caused by weak 5U4-G low-voltage rectifiers. Replace one or both to restore the set to normal operation.

If the sound is O.K. and there is no raster on the screen, look for the trouble in the high-voltage circuit. You will probably find that the 6Y6-G is shorted or weak.

A bad or weak 12AU7 vertical multivibrator tube will cause a bright horizontal line to appear on the face of the picture tube. Try replacing this tube.Michael L. Tortariello

FARNSWORTH MODEL 651P

The set came in with the complaint that the picture had insufficient height. Advancing the height control caused poor vertical linearity. The trouble was traced to the 1 -ohm, 60-cycle, 3 volt capacitor which bypasses the vertical centering control. The set was restored to normal by replacing this capacitor.-James J. McNumara

CROSLEY 10.401, -404, -412
Neck shadow on the picture tube in these models and in the $10-414,-416$, and -418 may be caused by reversed polarity of the focus coil. Wrong polarity causes the fields of the focus coil and the ion trap to interact to produce neck shadow and make centering difficult.

If this fault is suspected, reverse the current through the coil by interchanging the focus coil leads at the points where they are soldered under the chassis. If centering is easier and neck shadow diminished, and if the angle the focus coil makes with the neck of the tube is nearer 90°, this is the correct connection. When the coil is connected correctly, the current will produce a north pole on the face of the coil nearest the tube socket.-Crosley Service Dept.

SENTINEL 420B, 423, 425, 428
Fold-over on the left-hand side of
the picture which shows up as a horizontal V pointing toward the center of the picture or a faint milky-white area between the center and left side of the picture, is caused by the horizontal hold control being out of adjustment.

To clear this trouble, turn the horizontal centering control until the lefthand edge of the picture is visible. Adjust the horizontal hold control until the fold-over just disappears. If the extreme top of the picture starts bending or jitter is noticed, adjust the hold control for minimum fold-over with, acceptable stability. To find this setting, it may be necessary to readjust the horizontal lock contiol.

Center the picture with the center. ing control. Do not at any time use the hold control to center the picture. Sentinel Service Dept.

LATE PHILCO TV SETS

Before tearing into the circuit in ant effort to find the cause of insufficiont picture height, try replacing the 5 U 4 -(: rectifier. When the emission drops ofl the picture height shrinks. - Millor Margolis

ADMIRAL 20×122 TV SETS

The built-in antenna fits rather loosely in the cabinets of some models thus causing the picture to distort when anyone walks across the floor or shakes the set. Cure this by taping the antenna firmly to the cabinet with a good ad-hesive.-Bruce A. Brou""

G-E $12 T 7$ TV RECEIVER

Excessive contrast which cannot be reduced to normal with the picture control is probably caused by a shorted capacitor between the first and second sections of the sync amplifier and clipper stage. This is a .01-uf capacitor connected to pin 1 of the 6SL7. If it. opens, the horizontal and vertical sync circuits will fail.

Excessive contrast and a shaky picture will result if the $22(1-\mu u f$ capacitor at pin 5 of the 6SL7 is open. If the .02-1f capacitor at pin 4 of the 6SL7 is open, bright lines will appear at the top and bottom of the picture.-(reveral Electric Data

NO-GLARE TELEVISION FLITERS

For Better, More Clearly Defined Picłures

 Improves contrasteliminates television glare
SHARPENS PICTURE IMAGE
SIZES TO FIT ALL SETS
IN SMOKE OR BLUE COLORS
FOR ROUND OR RECTANGULAR
PICTURE TUBES

BROOKS RADIO \& TELEVISION CORP.
84 Vesey St., Dept. A, New York 7, N. Y.

Spacial RelayOVER A MILLION IN STOCK!

Whether you require large quantities of relays for production runs or single units for laboratory or amateur work, Wells can make immediate delivery and save you a substantial part of the cost.

This list represents only a few types of Special Relays. We also have huge stocks of Standard D.C. Telephone Relays, Midget Relays, Contactors, Keying Relays, Rotary and Slow Acting Types as well as many others. Write or wire us about your requirements.

STOCK NO.	voltage	OHMAGE	CONTACTS	MANUFACTURER \& NUMBER	PRICE	
R-503	12/32 VDC.	100	3A, 2C	G.E. Ant. Keying 500w 2C6530-653AR1	\$ 2.25	
R-749	600 VDC.		Max. 28 Amps.	Allen Bradley 810 Dashpot	5.95	Mide Selection
R-804	550 VAC.		18/38 Amps.	Culter Hammer C-261173A34 Contactor	3.50	
R-250	115 VAC.	\ldots	Adj. Cir. Breaker .04-.16A	Westinghouse MN Overload	12.95	
R-579	220 VAC.		1 B	Adlake 60 Sec. Thermo Delay	6.95	ot Electronic
R-294	27.5 VDC.	200	18	Edison 50 Sec . Thermo Delay	4.25	
R-686	115 VAC.		2 C	Leach 1157T-5, 20 Sec . ADJ. Delay	4.95	Omponents
R-246	115 VAC.		1 B	Cramer 2 Min. Adj. Time Delay	8.95	omponents
R-246A	115 VAC.		IA	Cramer 2 Min. Aoj. Time Delay	8.95	
R-611	24 VAC.		1A/30 Amps.	Durakool BF-63	4.25	-1 ${ }^{\text {a }}$
R-283	12 VDC .	125	AC/10 Amps.	Onan Rev. Current 3H4512/R24	1.00	
R-614	18/24 VDC.	60	1A/15 Amps.	Rev. Current Cutout 3H2339A/EI	3.50	
R-262		200	1 C	W. U. Tel. Co. 41 C Single Current	3.75	
R-245	12 VDC .	25	4 In . Micalex Lever		. 95	Tubes
R-527	612 VDC.	50/50	In Series	227668 For Scr-274N	. 95	Tubes
R-544	1224 VDC.	60/60	1 C	G.E. Push Button Remote Relay ©CR2791-R-106C8	1.65	Resistors
R-255			1A	G.E. Pressure Switen -2927B100-C2	. 95	Resistors
R-669	75 VAC.	400 CYC.	1B, 1A	Clare 400	. 95	
R-660	6 VDC.		$3 /{ }^{\prime \prime}$ Stroke	Cannon Plunger Relay :13672	.95 .950	Condensers
R-651	24 VDC.	100	Solenoia Valve	2.50	
R-295	$12 \mathrm{VDC}$.	275	Annuncitar Drop		2.15	
R-230	$5.8 \mathrm{VDC}$.	2	2A, IC	Guardian Ratchet Relay	2.15	Wire \& Cable
R-813	$12 \mathrm{VDC}$.	12	Wafer	Ratctet Relay From Scr-522	4.25	
R-275	$12 \mathrm{VDC}$.	750	1A, 1B, 1C	Guardian BK-10	2.75	
R-716	24 VDC.	70	2A/5 Amps.	BK-13	1.45	Volume Controls
R-620	$6 / 12 \mathrm{VDC}$.	35	2C, 1A	Guardian BK-16	1.05	
R-629	9.14 VDC .	40 4500	1 C 10 Amps.	Guardian BK-17A	1.25 210	
R-778 R-720	8 VDC.	4500 50	1C'5 Amps.	Kurman BK-24	1.10 1.35	Co-ax Connectors
R-720	24 VDC.	50	${ }^{2} \mathrm{C}, \mathrm{Ceramic}$	45A High Power	1.35 2.85	
R-500	12 VDC .	10/10	2 C 6 Amps.	Str. Dunn. Latch \& Reset	2.85 2.85	Relays
R-816	12 VDC .	10/15	2C. 6 Amps.	Guardian Latch \& Reset Sigma 4R	2.85 1.65	Relays
R-811	48 VDC .	8000	1 C	Sigma 4R Edwards Alarm Bell	1.65 .95	
R-524 R-838	24 VAC/DC.	925	2A	Edwards Alarm Bell Allen Bradley-Bulletin 702	. 95	Rectifiers
R-838	90.120 VDC.	925	2 A	Motor Control	4.50	
R-839	100/125 VDC.	1200	3A	Allen Bradley-Bulletin $=200 \mathrm{E}$ Motor Control	4.50	Transformers and
R-840	115 VDC.	1200	2A	Allen Eradley-Bulletin 209 Size 1 Motor Control W/Type " N " Thermals	5.50	Chokes
R-841	$115 \mathrm{VDC}$.	1200	4A	Allen Bradley-Bulletin :709 Size 2 Motor Control W Type "N" Thermals	25.00	Micro Switches and
R-842	115 VDC.	925	3A	Allen Bradley-Bulletin 709 Motor Contrel W Type "N" Thermals	5.50	Toggles
R-843	115 VDC.	1200	3 A	Allen Eradley-Bulletin 200 Motor Control	4.50	Antennas and Acces-
R-844	$115 \mathrm{VDC}$.	1200	3A, 18	Allen Bradley-Bulletin :202 Motor Control	4.50	sories
R-845	220 VAC.	Intermit.	3A	Allen Bradley-Eulletin :704 Motor Control	4.50	Electronic Assemblies
R-831	7.5/29 VDC.	6.5	1A/250A, 1000A Surge	Leach B-8	3.50	Electronic Assemblies
R.837	110 VAC.	2800	2A/30 Amps.	Leach 6104	2.75	
R-835 R-836	24 VDC, 220 VAC	2800	1 A Dble. Brk. 10 Amps. 2A Ddle. Brk./10 Amps.	Wheelock Signal, Bl/39 Wheelock Signal, A7/37	1.95 3.45	Dial Light Assemblies
R-836 R-566	220 VAC.	(Coil only,	2A Ddie. Brk./10 Amps. a complete relay)	Wheelock Signal, A7/37	.95 .75	
R-710		$150-0 \mathrm{hms}$	il Only	Guardian :38187	. 50	

Write For New Wells Catalog
Each relay is new, individually boxed, and unconditionally guaranteed by Wells
World's Largest Display of Radio and Electronic Components

SALES, INC.

IN TELEVISIONRADIO ON REAL TELEVISION SETS RADIO RECEIVERS F.M. RECEIVERS smops or COYNE

Big opportunities are waiting for men who know the practical and technical end of Television and Radio. That's what you get at COYNV-besides other branches of this giant field. Kemember. Television is the fastest srowing opportunity field today, and Radio is one of the biggest.

NOT "HOME STUDY" COURSES

All Coyne Training is given in our mamouth Chicago training slops. We do not teach by matl. Jou train on actual equipment, under friendmy Previous experience unnecessary. Hundreds of firms employ Coyne trained men.
START NON-PAY LATER Come to the Great Shops of Coyne in Chicago Established 1899 -now in our 52 nd Year. Oldest. Fully approved for G.I. training. Finance plan for non-veterans.

MAIL COUPON FOR FREE BOOK

send today for large pictures obligation. No salesman

(0) B. W. Cooke.

ELECTRICAL \& TELE-VISION-RADIO SCHOOL An fnstitution not for Profit 500 S. Paulina

- B. W COOKE, Pres.

B. W. COOKE, Pres. Television-Radio School 500 S. Pautina Street, Dept. 11-8H. Chicago 12, 111. I Send FREE IBOOK and full details on Televi$\|^{\text {Siori-Radio Course }}$

| NAME

ADDRESS
1 CITY

HELP-FREDDIE-WALK FUND

With this issue the Help-FreddieWalk Fund reached a total of $\$ 3945.73$. This fund, as our readers know, is for two-year-old Freddie Thomason, the Arkansas radio technician's son born with neither arms nor legs.

Little Freddie is trying hard to walk
Reports from Freddie's parents are quite encouraging because the young boy now insists on wearing his special harness practically all the time and he is trying very hard to walk. Of course, he will not be able to walk as we know the term because he has no legs and the only way he can accomplish forward motion is by twisting his body first to the right and then to the left. Once he has mastered this difficult motion he will be able to get around by himself.

Long after he has become proficient

ALMO SPOTLIGHI SPECIAL
 Tape-Disc Recorder Assembly

By General Industries

Just romect this Model 250 to amplifier and yon're culuinned fur the following: Records lape fromi records: Pecords dises from tape; Records microphone las back kerurds radion on tape; Recorts mitho. ond recorils.
 ow monnting plate $4^{\prime \prime}$. Equinperd with dynamatically malanced four pole mutor Net Weight $10 \mathrm{t} / 2$ ponint.
Supply is limited. Write for your's todus.
10\% Cash With Orders

"NO BOOK

in two generations, no book since Jules Verne, has undertaken to do what Hugo Gernsback in the first decade of our century has here so outstandingly achieved."

Lee De Forest
Father of Radio

Forty years ago, Hugo Gernsback, Father of Modern Science Fiction, in this book. RALPH 124C 41t, predicted and described in startling detail, radar, the learn whie you sleep mead television, televised opera, plasecording micro ball, blood her other sientific achievementsall undreamed of in 1911-but part of everyday life today
All of these and scores more, not as yet realized are found in his remarkable prophetic book. For fantasy but on the logical projections of estab. lished scientific facts. RALPH 124C $41+$ is
RALPH able true in 2680 AD-but it is far more than fietion! To technically minded people, RALPH 124C 41 + is the most complete and accurately documented is the most compleg of scientific prophesy ever published. It watalog originally written in 1911 and published in book form in 1925. Now, because of its tremendous importance as a work of accurate, scientific prediction of the future, it hos been reissued in a new, second edition
Hugo Gernsback's writings were the spark tha started many of today's top radio engineers and scientists on their way. Now again, this new edi tion of RALPH 124C 41t may well be the inspiration for a new generation of pioneers of science
RALPH 124C 41t is the kind of book you should read. Order your copy now, only $\$ 2.50$ postpaid. The supply is limited.

RADIO PUBLICATIONS

25 West Broadway
New York 7. N. Y

MAIL THIS COUPON TODAY

```
* RADIO PUBLICATIONS
25 West Broadway. New York 7, N. Y
*Gentlemen
- Send me a copy of RALPH 124C 41+ postpoid
at once. My remittance of $2.50 is enclosed
NAME
STREET
- CITY.
```

in doing so will come the task of another appliance to give him artificial arms and hands, but this is still quite a bit in the future.

In the meanwhile, Freddie's expenses are great day in and day out; and though it is true that while he is very young his parents can take care of him, later on he must have special tools, special appliances bought almost yearly, all of which adds up to quite a lot of money every year. For this reason our readers are urged to contribute as much to the fund as they possibly can afford. Contributions are badly needed.

The Editor is pleased to announce that the largest contribution received was $\$ 180$ from Mr. John A. Gardner, a television engineer from Camden, N . J. We were very gratified to receive this very fine donation and RadioElectronics greatly appreciates Mr. Gardner's effort.

Keep up the good work by sending your contributions, even the smallest one will be very welcome.

Make all checks, money orders, etc., payable to Herschel Thomason. Please address all your letters to:

Help-Freddie-Walk Fund c/o RADIO-ELECTRONICS 25 West Broadway New York 7, N. Y.
Balance as of October 23, 1950Louis Abad-Rego Park, N. Y.W. R. Adams-Clarks Hill, Ind.
Anonymous-Fairborn' Ohio
Anonymous-El Paso, Texas
Anonymous-E! Paso, Texas
Anonymous-Cheyenne, Wyo
M. B.-Flushing, N.
Barber Motor Company - Worthington,
James H. Baskerville, Amityville, \tilde{N}.
5.00
Mr. \& Mrs. N. A. Basso-Morgantown
B. L. Brown-Carlsbad, N. Mex.
F. Cardinal-Schenectady, N
5.00
1.00
Mr. \& Mrs. Leol. Chaisson-Athal Mass
Class E56-58, Crescent School of Radio \&
Television-Brooklyn N Y or Radio a
W. Cooper-Schenectady, N.
Ralph Cramer-Bellmore, N
William T. Curtis-Syracuse, N.
David's Radio Service-Church Point, La.
Dow Radio, Inc.-Pasadena, Calif.
Bruce E. Duff-Bedford, Ohio
Dutchess \& Butch-East Orange, N.
Kenneth R. Elliott-Dayton, Ohio
Albert Evangelista-Belleville, N. J
Luis C. Fargel. Jr.-Johnsonburg, Pa.
Harry Fersch-Jersey City, N.J.
John A. Gardner-Camden, N. J.
Charles Godleski-Utica, N. Y.
Mabel Goetz-Monroe, Wisc.
Nathan L. Goetz-Monroe, Wisc
T. Goldie-Schenectady, N. Y
Harry E. Hall-Detroit, Mich.
Harry E. Hall-Detroit, Mich.
Paul Heine-St. Louis Mo
J. F Holton-Yaldosto Mo.
\dot{W}. Kelly-Schenectady. Ga.
Susan \& Henry Jr. Kiertscher-Downers
Grove, Ill. Kokovikos WOOU Tom'......
Join MCDonnell, WINWP-Jamaica Plain,
Mass.
Mr. ${ }^{\text {W. }}$. Mrs.
B. L. Brown-Carlsbad, N. Mex
Mr. \& Mrs. Leol. Chaisson-Athol, Mass. Class E56-58, Crescent School of Radio \&
W. Cooper-Schenectady, N.
Wiltiam T. Curtis-Syracuse, N
David's Radio Service-Church Point, La.
Bruce E. Duff-Bedford, Ohio
Dutchess \& Butch-East Orange, N.
Kenneth R. Elliott-Dayton, Ohio
Luis C. Fargel. Jr.-Johnsonburg, Pa.
Harry Fersch-Jersey City, N.J. .
John A. Gardner-Camden, N. J.
Mabel Goetz-Monroe, Wisc.
Nathan L. Goetz-Monroe, Wis
Harry E. Hall-Detroit, Mich.
J. F. Holton-Valdosta. Ga.
Susan \& Henchectady, N. Y.

MORE THAN 150,000 RGP INSTRUMENTS IN USE TODAY-PROVE THEIR SUPERIORITY

MODEL 345K SUPER VACUUM TUBE VOLTMETER
 megohms - Iselation probe-renter of ohm scale 10 olms- 5 whmmeter ranges reading from ? ohms to 1 billion ohms (1000 megolmis). 20 woltage ranges $0-1000$ rolts including Discrinutnator alignment scale with ze
Discrininator alignment seale with zero eenter permitting operation in both directions,

MODEL 322AK TUBE TESTER KIT Fully engineered to test all recently developed tubes
for cherking inticinal sections of malti-purpose
suminature reeriving tubes. Jack for head-phone

MODEL 447BK MULTI-TESTER KIT

MODEL IITAK DYNATRACER

RGP HIGH VOLTAGE MULTIPLIER KIT

tan
:wimian hellial high roltage resistor certi-
fhed safe for all ranges up to 33,000
Kolts. MODEL HVMP.IK. only
$\$ 695$

RCP ULTRA HIGH FREQUENGY PROBE KIT Tses germanium crystal
with low impedaney netKIT MODEL HFP-IK only

RADIO CITY PRODUCTS CO., INC.
 152 WEST 25th ST
 ```NEW YORK 1, N. Y.```
 The "Multicoupler" Master
 T. M. Reg. U. S. Patent Office Television Antenna System

- Designed by Engineers with 20 years Experience in the Master Antenna Business.
- Available with or without R.F. Amplifiers.
- Low Cost, Highly Efficient, Attractive Terms.
- Installed in Many Large Housing Developments in New York and New Jersey.

Amy Aceves \& King, Inc.
Consulting Engineers 11 West 42 St. NYC.

BUFFALO RADIO SUPPLY

219.221. Genesee St., Dept. RE I Buffalo 3, N. Y.

"THE BIGGEST SHOW ON EARTH"
-foot hy 7 -foot pleture-Compact-Self Contained-stituione-IIospitals. Imagine Clear, Eright, Steady I'Y with hyures on the screen-

AS LARGE AS LIFE! ! ! Picture can be regulated in size up to 63 sq . ft . Colonial Vision Master projection model TV is complete with all accessories;
screen, and is fully guaranteed:
Rpaular price $\$ 2!95.00 \quad$ Special Net- $\$ 795.00$
kayonet type radio pilot light sockets for model ratl-
road ent husiasts, ete. $\$ 5,00$ a hundred. Mazda licensed
bulbs. Der lit, 50 c .

PI'SII SWITCH
S. Section. Make-
Break \& SPDT
cat I'ressing one 98c

WINDOW ANTENNA

Highest quality telescoping
folled dipole antenna with
all the features usually exprected in such an antenna. including use as a dipole and
reftector, and in addition a rentertor, and in addition a
mounting bracket provided so
 that the antenna can be installed in any window in two minutes or less. Any slight loss in graln because of the reduction from rooftop height is more than compensated by ability to
orient antenma instantly hy opening window and adjusting for maximuns signal strenktls. Mountlng har can he installed horizontally or vertically in window frame or even between attic raflers, whichever is mort
convenient. Your cost $\$ 7.00$. With high freguency at. comvenient. Your cost $\$ 7.00$. With high freguency at
tachment for channels 7 to $13 \$ 9.00$. Either type tor SENSATIONAL FASCINATING MYSTERIOUS SENSATIONAL, FASCINATING, MYSTERIOUS SELSYNS. Brand new selsyns
pany. Two or more connected pany. Two or more connected
together work perfectly on $111 i \mathrm{y}$ A". Any rotation of the shaft connected to it will rotate exactly as many degrees in t
 wame direction, folity uneringly as if the unlts This is true whether you twist the shaft of the master unit a fraction of a revolution or many revolutions I seful for indirating direction of weather ranes. rat
tating directional antemas, or contrulling innumerable opurations from a distance. Complete with diagram amb insiruetions. Per Matched pair \$4.95.
Transvision $7^{7 *}$ television kits complete with everything hut fabinet. regular wholesale price \$149.50. Your

STROMBERG CARLSON

I'ower Switching Relay Box. Neat $31 / 2 \times 4 \times 51 /{ }^{*}$ Steel ase with tight fitting cover finished in Stromberg's
lisual beautiful chocolate color erackle finish-25c.

Bright Star

Flashlights of Tomorrow
i theatiful unbreakuhle plastic 2 cell tashlights on col-
orful display card with 1: free hatteries. Flashlights orrul display card with 12 Pree hatteries. Flashlight
aline worth $\$ 9.00$. Your cost for this hargain $\$ 4.95$

SUPER SCOOP

All Rider Manuals and other Rider Publications 20\% off the regular whelesale prices while quantities last.

TV GUY WIRE

 Nonsational super Strength Stranded Cable at a MIRdiam. $1 / 32^{m}$, twisted in such a way that the cable willresist snaring. Alloy brass plated tor resist corrosion. resist snarling. Alloy brass plated tor resist corrosion.
I'se for antenna wire, guy wire, captire balloons, dal I'se for antenna wire. guy wire, captire halions, dal
cable, ete. 6 cables stranded together (slightly over
 lift a ton. While the supply lasts 1000 ft . reel $\$ 2.50$. Her ft . Speol $\$ 10.00$.
GENERAL ELECTRIC 15 TUBE TRANSMITTER RECEIVER SET. This brand new 15 tube transmitter receiser was designed for motile storage battery bow ered service. It's a cinch for the experdinenter to eonnect this unti for 110 volt A.C. operation hy onowits
the inslructions and diagrams supplied, which cover numernus applications, including FM and amateur television transmission and reception, For those intendlng to use on car or boat, a new dynamotnr, exactly as
originally supplifd, costs only 815.00 . Don't fail to originally supplifed, costs only sis. 00 . Don't fail to HT-1248 for only $\$ 29.95$, or two for $\$ 53.90$.

Walter Raymond, Raymond Music Co.Leavenworth, Kansas

Wilfred Rhodes-Burbank. Calif. E. F. Robinson-Dayton, Ohio Sandy's Radio Service-Long Beach, Calif Kathryn K Scatchard-Philadelphia Pa F, W. Schamu-Liverpool, N. Y. W. Schamu-Liverpool. N. Y
A. Sikorsky-Alexandria Va

Mr. \& Mrs. J. Simrin-Bronx.
Thurman 1 Slater-Fort Wayne Ind
Mrs R A Smith-Charlestown, Mass
Henry Stackhouse-Portland, Me.
Vernon Tyo-Tupper Lake, N, Y.
Mr. \& Mrs. E. Raymond Ur-Pottstown, Pa
C. E. D. Varcoe-Detroit, Mich.

Mc and Frances Vaughan-Port Arthur
Texas
Charles
C. Watkins, W2RVP-Bridgeton,
N. J.

Wickell's Radio Service-Fulton, Mo.
Irving Wilson-Twin Falls, Idaho
Mrs. Leo Wiman-Lubbock, Texas
Harold \& Charles Wisker-Hastings, Nebr Charles E. Young-Fort Wayne, Ind.
T. Zak-Schenectady, N, Y

Total contributions received
to November 17. 1950—\$3945.73

3n arrnsback zublications

HUGO GERNSBACK
 Founder

Modern Electrics	1908
Electric Experimenter	1913
Radio News	1919
Science \& Invention	1920
Television	1927
Radio-Graft	1929
Shart-Wave Craft	1930
Television News	1931
Wireless Association of Anserica	1908

Some of the larger libraries still have conies of ELEC.

JANUARY, 1917 ELECTRICAL EXPERIMENTER

The Radio Obliterator
The Presidential Amateur Radio Relay New Wireless Law Planned
Election Returns Flashed by Radio to 7,000 Amateurs
New Audion and Radiophone Apparatus Long Distance Radio Without Aerials Radio Detector Development, by H. Winfield Secor
Action of Detectors in Wireless Telegraphy, by Wilder D. Bancroft, (Cornell University
Marconi Company Sues the U.S. for $\$ 1,000,000$ Damages, by A. Press, B. Sc.

The How and Wlyy of Radio Apparatus How to Make Any Audion Oscillate, by Edgar Felix
Marconi-Type Rotary Gap, by F. F. Lambert
New Audion Apparatus for Radiophony and Amplifying:

RADIATION-PROOF GLASS SHIELDS ATOMIC WORKERS

Neutron-absorbing glass, containing cadmium borosilicates with fluorides, is a result of research directed by Dr. Alexander Silverman, head of the University of Pittsburgh's chemistry department. The glass will be used in goggles to protect the eyes of atomic workers, and in peepholes.

Another new glass has X-ray absorbing powers. Tungsten phosphate produces this effect and the glass will not discolor on exposure to high-energy X-rays or gamma rays. By making a composite lens with a layer of each of the two absorbent glasses, the glass will shield against both kinds of radiation.

SOUNDTRONICS SPECIALS

Min. Order, $\$ 5.00-25 \%$ w/order required
SOUNDTRONICS LABS.
632 Arch St., Phila. 6, Pa. MA $\mathbf{7 . 2 7 7 5}$

MICROEXAMINATION

Capable of a 500 -power magnification, the shadowgraph in the photo is used at Sun Radio and Electronics Co. of New York to examine phonograph stylus wear. The stylus appears on the screen as a sharply defined 6×9-inch shadow. This checkup service is offered free to those who bring in their cartridges.

Correction

The grid resistor of the first 6SJ7 in the high-gain amplifier described in the September, 1950 issue should be 220,000 ohms instead of 220 ohms as shown on the circuit, Fig. 1
SAVE AT WHOLESALE RADIO! TV ACCESSORIES IMMEDIATE DELIVERY! TECHMASTER TVBOOSTER KIT Complete with tube, pre-
and
anded coils, pre-stampec

One radio man tells another-GERNSBACK LIBRARY BOOKS are the best technical book buy in the field today! Accurate, concise, easy-ło-readthey cover all the important phases of servicing, radio and audio. Check this list of interesting titles and order the books you want today.

TWO GREAT NEW BOOKS JUST ADDED

No. 41-PUBLIC-ADDRESS GUIDE by Guy S. Cornish, 80 p., 75 -How to make more money from PA work. Getting started, installation, servicing, preventive maintenance, trouble shooting, construction,

No. 42-HIGH-FIDELITY TECHNIQUES by James R. Langham, 112 p., $\$ 1.00$. Most unusual book on high-fidelity ever written How to design and get top performance from your own equipment.

10 POPULAR 64 PAGE BOOKS-50c EACH

No. 29-HANDY KINKS AND SHORT CUTS. A treasury of time savers! Antennas, power supplies, test equipment, phonographs, amulifiers. Easy reference. Illustrated.
No. 30-UNUSUAL PATENTED CIRCUITS. A gold mine of important hook ups. Control circuits, detectors, amplifiers, power supplies, foreign circuits.

No. 31-RADIO QUESTIONS \& ANSWERS Answers the tough ones on circuit diagrams, amplifiers, receivers, transmitters, meters and test equipment.

No. 32-ADVANCED SERVICE TECHNIQUE. A "must" for the advanced service man Covers specialized problems of servicing not usually found in ordinary textbooks.

No. 33-AMPLIFIER BUILDER'S GUIDE. For the designer and builder of audio equipment. Covers a variety of amplifiers with power outputs from 8 to 30 watts.

TWO IMPORTANT 75 \boldsymbol{c} BOOKS

No. 39 - PRACTICAL DISC RECORDING. The last word in making good recordings. Covers techniques as well as theory. A full No. 40 - THE CATHODE-RAY OSCILLO SCOPE. How the scope works and how to use it in $T V$ and radio servicing and amateur operation. Describes various functions in detail. 112 p.

See Your Distributor-or use coupon RADCRAFT PUBLICATIONS, INC.

No. 34 - RADIO-ELECTRONIC CIRCUITS. For the experimenter circuit diagrams of intercom systems. power supplies, voltmeters, electronic relays, receivers, etc.

No. 35-AMATEUR RADIO BUILDER'S GUIDE. For the "ham" who builds his own. Receivers, transmitters, antennas, converters, etc. Practical construction data.

No. 36-RADIO TEST INSTRUMENTS. Practical construction data on signal tracers. capacity meters, portable and bench multicheckers, voltmeters, etc.

No. 37-ELEMENTARY RADIO SERVICING. How to get started and keep going! Planning the shop, circuit checks, signal tracing -other fundamental servicing problems.

No. 38-HOW TO BUILD RADIO RECEIVERS. Describes 18 malern sets including short wave, broadcast, vhf, portable, ac-operated, ac-dc, miniatures-types for every fan.

RADCRAFT PUBLICATIONS, INC., DEPT. 11 25 West Broadway, N.Y. 7, N.Y.

Encloserl please find my remittance for $\$$ \qquad
$\square 29 \quad \square 30 \quad \square 31 \quad \square 32 \quad \square 33 \quad \square 34 \quad \square 35$

\qquad
\qquad
 Send M.O. or CHK. Mdse. Guartd. Shpg. Charges

COMMUNICATIONS EQUIPMENT CO,

ELECTRONIC LITERATURE

Any or all of these catalogs, bulletins, and periodicals are ovailable to you if you write to us on your letterhead (do not use postcards) and request them by number. Send coin or stamps where eash is required. We will forward the request to the manufacturers, who in turn will send the literature directly to you. This offer void after six months.

JA.I-AUDAK BROCHURE
The latest brochure issued by the Audak Co. describes their line of Polyphase and Tuned-Ribbon reproducers, tone arms, and recording cutters.Gratis

JA-2-RADIO-TV PARTS CATALOG
A 34-page catalog issued by Greylock Electronics Supply Co. lists test equipment, tubes, components, antennas, and other equipment used by service technicians, engineers, and construc-tors.-Gratis

JA.3-RADIO SHACK CATALOG

Radio Shack Corp. of Boston, Mass., has published its 1951 catalog of electronic parts, complete equipment, and kits. Containing 172 pages, the catalog has major sections devoted to test instruments, public-address and high-fidelity music systems, amateur radio equipment, and electronic components and fittings.-Gratis

JA-4-PARTS CATALOG

Containing approximately 36 pages of switches, connectors, couplers, rectifiers, resistors, capacitors, special transformers, and hundreds of relays, the 1950 catalog issued by Wells Sales, Inc. is a source of special components for new equipment or replacement in military electronic equipment.-Gratis

JA-5-CONTROLS AND RESISTORS

Most types of standard and special controls and resistors are listed in the new Clarostat catalog. Potentiometertype controls having special shafts, high-voltage couplers, and other features are included along with the standard line of ballasts; Potentiometers; rheostats; fixed, adjustable, and flexible wire-wound resistors; and attenu-ators.-Gratis

JA-6—AUDIO HAND3OOK
A new edition of Sun Radio's audio equipment handbook is being distributed. A 38-page section is devoted to answering the layman's queries on high-fidelity reproducing equipment for the home. This section is illustrated with photographs and drawings of typical custom installations and includes working drawings showing the construction of typical bass-reflex and corner-type speaker enclosures. The catalog section lists pickups, amplifiers, speakers and enclosures, and other audio equipment.-Gratis

250-watt ultra-violet iah source Makes fluorescen articles glow in the dark Fits any lamp socket. Fo experimenting, entertain ing, unusual lighting effects Ship. wh. 2 lbs.
ITEM NO. ${ }^{87}$ SAVING AT
$\$ 2.45$

LItTLE GIANT MAGNET

Lightweight 4 or. ALNICO per. manent magnet. $13 / 4^{\prime \prime} \times 11 / 2^{\prime \prime}$. Lifts more than 20 TIMES ITS OWN WEIGHT! Ideal for hobbyists, ex.
perimenters. Shipping weight $3 / 4$ lbs.
1TEM NDO:
BIG VALUE AT
$\$ 1.50$
5 LBS
POWERFUL ALL. PURPOSE MOTOR tion motor 15 polts 3000 rpm $3^{\prime \prime} \times 2^{\prime \prime} \times 13 /{ }^{\prime \prime} ; 4$ mounting studs
 $7 /{ }^{\prime \prime}$ shaft, $3 / 16^{\prime \prime}$ diameter; 110 120 volts. $50-60$ cycles. A C. only. When geared down, this unit can operate an $18^{\prime \prime}$ turntable with a 200 lb dead weight. Use it for tons, displays, practical purposes. Ship. 2 lbs
ITEM NO. 147
UNUSUAL BUY
$\$ 2.45$

WATTHOUR METER

WESTERN ELECTRICBREASTMIKE Lightweight 1 lb . carbon micro. Phone. Aircraft ype. Breastplate mounting adiustable 2 -way swivel. Easily fostened straps. For home broadcasts, communica-
tions etc. Comolete with 8 foot tions etc. Complete with 8 foot cord, hard rubber plut. shing Shized witate. lbs. non-rusting tinish STEM NO. 152.
$\$ 1.10$

TELEPHONE TRANSMITTERS

250 POWER TELESCDPE LENS KIT Make your own high powered 6 ft. telescope! Kit contains $3^{\prime \prime}$ diam., 75" focal length, ground lens and necessary lens and necessary
pieces. Magnifies 50 x to 250x. Full instructions. Ship. Wt. 1 lb
TTEM ND
YOU SAVEAT
YOU

HUDSON SPECIALTIES CO

40 West Broadway, Dept. RE-7-51
New York 7, N. Y.
Sam enctosing full remita
 C.O.O. ORDERS ACCEPTED ONLY WITH $\mathbf{2 0 \%}$ OEPOSIT

Circle liems wanted
87

aty zone State

Technical Bulletins

EACH $\$ 1.00$ Postpaid Foreign $\$ 1.25$

Simplified technical information on many subjects of everyday usefulness, written in simple, easy-to-understand language. They contain no complicated mathematics, chemical and electrical theories, and are not based on the assumption that the reader has had a technical training.
(102) Cleaning Products for Many Pur-poses-Over 35 effective chemical cleaners that can make and sell.
(110) Electroplating Nan-Metallic Ob-jects-lncludes wood, leather, Haster, glass, nowers, insects, fabrics. Complete directions.
(114) Thermostats Easily Made-Desiyning and making automatic control units of many types for maintaining uniform temperatures, autumatic furnace regulation, safety controls to revent overheating, elc.
(115) Glue Malds for Casting Novelties - Making flexible glue molds for casting small ,bjects, using plastics, magnesite.
(119) Electroplating with Alloys-Bronze, rass and cadmium-silver. Improves finish and urovides durable coating.
(123) Mirror Silvering-Make money resilvering old mirrors and making new ones. Colured, front-surface, transparent and photo mirrors.
(124) Soldering All Metals-Includes aluminum and diecast alloys. Secrets of using the right flux and correct technique.
(125) Buffing \& Polishing-All details on correct polishing. How to select the right abrasive for different kinds of metal. Gives wheel speeds, ypes and sizes of motors for best result
(129) Caloring Metals Chemically-Tested formulas and directions to produce durable finishes in many colors on brass, copper, iron, iluminum and their alloys by chemical processes. (130) Glass-Working Technique-How to :lit, drill, grind and mount glass correctly; in--ludes cutting of circles and internal openings.
(132) Working with Plostics-Covers all deiails of cutting, tooling, bending, cementing and milishing. Enumerates various linds. Shows how 11 design articles. Includes using liquid plastics. (139) Rubber Molds for Casting Novel-ties-Used for same purpose as glue molds but "here greater elasticity is required.
(141) Recording Thermometer-How to moke device to record room temperatures over i2-homr periods on a disk. Has alarm-clock nechamism.
(146) Simplified Casting Methods-Mak. ing small castings of soft metals without use of sand molds. For novelties, toys, etc.
(147) Drills and How to Use Them-How o nse drills in different metals, plastics and other materials. How to sharpen correctly. Includes harts giving speeds and rate of drilling.
(149) Electroplating with Copper, Nickel, Chromium, Zinc, Lead and Cad-mium-Enables anyone to do this fascinating "work on a small scale.
(156) Home-Maintenance Formulas \&

Repairs-Includes a large number of simple, ffictive solutions for everyday household prob lems.

TECHNIFAX, ${ }^{520 \text { N. Michigan A. Ave: }}$

Enclosed find $\$ \ldots$....for which send the following Technical Bulletin of $\$ 1.00$ each (Foreign $\$ 1.25$) as

Address
City \& State

Walter A. Buck, vice-president and general manager of RCA Victor Division, was elected to the board of directors of the Radio Corporation of America. He succeeds Edward J. Nally who retired. Mr. Buck joined RCA in 1948 upon his retirement as a rear admiral in the U.S. Navy. He was president of the Radiomarine Corporation of America until July 7, 1949, when he was elected operating vice president of RCA Victor Division.
M. A. Acheson, former chief engineer of the Sylvania Radio Tube Division,

M. A. Acheson was transferred to the staff of E. Finley Carter, vice president in charge of engineering in New York. R. P. Clausen, former assistant chief engineer, succeeds him as chief engineer. Sylvania also announced the appointment of Walter R. Seibert as controller. Mr. Seibert was formerly assistant to the controller. W. S. Parsons, vice president in charge of sales at the Centralab division of Clobe-Union, Inc., announced the following promotions: Wickham Harter to sales manager of mechanical-elec tronic products, including the sales activities of the variable resistor and switch divisions; Douglas Thatcher to sales manager of ce ramic-electronic
 products; and Robert A. Mueller to sales assistant to Mr. Harter.
Dr. Irving Langmuir, recently retired associate director of the General Electric Re-

I. Langmuir SEARCH LABORATORY, was awarded the John J. Carty Gold Medal of the National Academy of Sciences for noteworthy contributions to the advancement of science. The award may not be made more often than once in two years. Dr. Langmuir also holds the Nobel Prize in Chemistry, the Faraday Medal of the British Institute of Electrical Engineers and many other awards.
Gilen MeDaniel of RCA was appointed Chairman of the RTMA Defense Profits Tax Committee, which will consider effects of the proposed excess-profits tax on the radio-TV industry. Other members of the committee are: Max F . Balcom, Sylvania; J. E. Cain, P. R. Mallory; B. L. Graham, Du Mont; Herbert C. Hamilton, Hytron; Raymond Herzog, Emerson; Edward L. Hulse, General Electric; W. Myron Owen, Aerovox; M. G. Paul, Philco; Ernest Searing, IRC; Robert C.

1. Operates up to 100^{\prime} from set.
2. Remote station selection. fine tuning, volume con.
3. No Re-Radiation or local interference.
4. Frequency response distortion is minimized
5. R.M.A. guarantee on all parts.
6. Uses a standard coil tuner.
7. Complete instructions \& wiring diagram
8. All parts, connections, cabinet etc. included in kit
9. Adaptable to FM, Pix, expander, etc.
10. Easily assembted \& installed.
A. KIT (All parts Complete) . $\$ 19.95 \quad \mathbf{\$ 3 7 . 9 5}$
B. TUNER (Standard Coil).. $18.95 \quad \$ 2$ (Combined C. COMPLETELY WIRED. 45.95

PRAGER'S Visible Inventory R/C PARTS-RACK

BETTER TV RECEPTION

TWINTRAX ${ }^{*}$ TAPE RECORDERS

 ...give you more
 MORE MODELS
 the most complete variety of recorders for professional, semi-professional and experimenter use.
 MORE FEATURES
 for better quality, smoather performance and easier operation.

MORE VALUE

because our direct sales policy saves you dealer markups.
Send today for our catolog 5109 whith lists complete all recorder models and accessories. \#Tratemark Revt

AMPLIFIER CORP. OF AMERICA

398 Broadway New York 13, N. Y.

Every RADIOMAN
 can use these SERVICE HINTS!
 Every page of plify Radio Re. pairs" is packpairs is packed with on-thebench. ideas.
 Valuable Manual Yours-FRE Write tollay-no ohligntion.
 FEILER ENGINEERING CO. Dept. 1RC1-1

LEE de FOREST Father of Radio
Here's your "code" to radio communications history by the man who made it-Lee de Forest! In this dramatic life-record of the inventor of the radio vacuum tube, you'll read in his own words a thousand behind-the-scenes facts of radio's Historic Firsts - all aimed to interest "wireless hams," radio and television fans.
528 pages with 16 pages of $6^{\prime \prime}$ by $9^{\prime \prime}$ photographs. Send now for this great autobiography. ORDER YOUR COPY TODAY Guarisfaction Enclosed find \$
send_ copies postpaid.
Name
Address
City
Wilcox \& Follett
Dept. REF $\bullet 1255$ So. Wabash © Chicago, III.

SAVE Up to 70% on Electronic,

 Radio, Mechanical Equipment!For home experimenters, laboratories, schools,
etc. New fully guaranteed. Fraction of original cost. 1000s of items including:

OPPORTUNITY AD-LETS
 issue. Berimning with the April 19.1 issue the rate
with be 35 c a word for each inscrtion. Name. address will be 35 c a word for each mserthon. Same. adares ('ash athould accompany all clasifintd alvertisments unless placed by an accredited adrertising agency. No ad-
vertisement for less than ten words acequed. Then vertisement for less than
percent discount six issues. Wenty petcent for twelse issues. Objectlonable or misleading atsertisememts
not accepted. Advertisements for February, 1931, issue. not accepted. Auvertisements for
must rearth us not later than Decenber 24 , 1950. Radio-Electronics, 25 W. Broadway, New York 7, N. Y.

HEIPRESENTATIVE-Long Island, New York. One million people (equal to Buston). This last area requires resident coverage. We cover dealers and jobbers like a blanket. Radio, Ty supplies only. Ten years experience liox $111-1$, c/o Radio-Electronics, New lork.

SPEAKEK HEI'AItS at wholesale prices. Guaranteed work. Amprite Speaker service, 70 Vesey St., New York

MAGADINEA (BACK DAMEID)-FOREFIGN. DOMFATIC
 werghts. N. Y.

WE IREI'AIR. EXCHANGE, SELL, ALL TYIVES OF electrical instruments, tube checkers and analyzers, Nazle
ton Instrument Co. (Electric Meter Laboratory), $1+0$ Liberty

IINCASTER, ALLWHNE \& HOMMEL, $\$ 36$ HOWHEN Buthling. Washington, L). C. Registered l'atent Attorneys
Practice before Inited states l'atent office. Validity and
 infringement laternganception" forwarded upon request.

WANTED: AN/APR-4, other 'APR-", "ABLA-"."TS-'
 arice in first letter. Littell, Farhills Box 26 . Layton 9. いhio.

RADIOMEN, SEHVICEDEN, BEGINNELKS - MAKE more mones. easily. quickly. We.jo weekly possible We show you how. Information free. Merit Products. 216-32L I32nd Avenue. Springtield Gardens 13, New York.

TEOHNICIANS ! ! ENGINEERS ! ! Interested In a top-
 SEARCH BUREAU. P. O. Bux I21, Wiehita, Kansas.

HADIO-TELEYISION-ELECTRONICS-TVTORING \$. per lesson-Mo. Tech.. 3907 North 25 th Street, St. Lould 7 Missouri

ATTOMATIC ANTENNA MATCH-Iny spacing line to am load! TV or "han'". send dime for details. A. I Aunzig, (ex-W6BY), Hawthorne, Calif

AMATEVRS-IEADIO AND ELECTRICAL RESEARCI

Tait, Stromberg-Carlson; Robert C. Sprague, Sprague Products.
James M. Toney, advertising manager of RCA Victor home instruments department, was promoted to the post of director of public relations of the RCA Victor Division. Thomas J. Bernard continues as assistant director of public relations. RCA also announced the promotion of Warren E. Albright to the post of manager of the general materials division for the company's home instrument department. M. S. Klinedinst was named manager of the industrial equipment sales section of the RCA engineering products department.
Lawrence C. \mathbf{F}. Horle, prominent in the standardization of radio enginering and equipment, died in St. Barnabas Hospital, Newark, N. J., at the age of 58. Mr. Horle was best known for his work in the field of standardization of terminology and ratings. He was a past president of the IRE and more recently chief engineer and director of the data bureau of the RMA (now RTMA).

Personnel notes

Charles Edward Wilson, president of General Electric Co., was named by President Truman to the 24 -man National Science Foundation for the encouragement of basic research.

Brig. Gen. David Sarnoff was appointed national chairman of the 1951 Red Cross Fund Campaign.

Larry F. Hardy, president of Philco's radio and television division, was elected chairman of the RTMA Public Relations Committee.

Charles W. Creaser and Kenneth S. Brock were appointed special products sales manager and commercial sales manager of Workshor Assoclates. Iñ.

Shannon C. Powers was named general sales manager of Russeri Electric Co., a subsidiary of Raytheon Manufacturing Co.
C. M. Breckenridge was appointed assistant to the controller of the Simpson Electric Co.

Owen K. Lindley and James H. Sweeney were named sales managers for electronic heaters and germanium diorles in the commercial equipment division of General Electric.

Dr. Vladimir K. Zworykin, vice president of RCA Laboratories, was awarded the 1950 Progress Medal of the Society of Motion Picture and Television Engineers, the society's highest award, for contributions in a new field.

John Wood and William Newitt have joined the engineering staff of Electro-Voice, Inc.

Hulbert C. Tittle was promoted to assistant chief engineer of the Radio \& Television Division of Sylvania Electric Products in Buffalo, N. Y.

ONBEFE BATTERY RECORDER

WALKIE-RECORDALL ${ }^{8}$ ih. minigture Batcery

tele service data slow

Dear Editor:

Several months ago I finished a course in radio and television, and am now doing part time work in radio with the ambition to go into it full time. I have not been able to obtain servicing data for several new sets of different manufacture without a great waste of time. If manufacturers would make servicing data available, we could service some of the more difficult sets quickly, saving the owner time and money, and make these same owners proud to do a lot of advertising for the manufacturers, instead of grumbling how much it costs to service their sets.

I wish to give you my heartfelt thanks for all you have done, especially your recent editorial, "Manufacturers Us Service Technicians," and hope that you will continue.

Emil halar

South International Falls, Minn.

SEPARATE MEN FROM BOYS?

 Dert Editor:Those technicians who argue that there are too many articles on TV in your magazine make me think of those who argue against the code test as a requirement for an FCC license. If these groups of people would expend one-tenth the energy in studying TV or code that they waste in fighting it, they would get off much easier and know a lot more to boot. Moreover, they would be increasing their earning power and enabling themselves to stay in the electronics field instead of being "washed out" and relegated to repairing electric irons and 117 -volt cords.
On the other hand, it may be just as well. TV, code, etc., may be the instruments by which the men in electronics are separated from the boys!

Peter N. S.aveskie
Butan Rouge, La.

CORRECTION

The value of resistor $R 7$ was not given on the diagram of the remote amplifier on page 26 of the October, 1950 , issue. This resistor is a $150,000-$ ohm, $1 / 2$-watt unit. The value of R 8 is incorrect on the diagram. The correct value is 50,000 ohms, 10 watts.
We thank the author, Mr. R. G. Finkbeiner, for this correction.
The author of the article "A HighGain Amplifier," in the September, 1950, issue is listed as James Rundo. His correct name is John Rundo.
 Also nvailable: Thodel 12.A3.10 wratts. with

- Distortion and intermodulation at a nete fow
- Reduction of listening fatigue.
- Brilliant, clear tone.
- Separate controls-stepped-for Bass and Treble.
- Extremely low volume without any loss of quality. Write TODAY for FREE Jechnical Bulletin and Detalled Distortion Analysis
BROOK ELECTRONICS.Inc. Dept.EA-1,34 De Hart Place, Elizabeth,N.J.

WHERE RADIOMEN MEET, EAT and SLEEP

Atlantic City's Hotel of Distinction The Ideal Hotel for Rest and Relaxation Beautiful Rooms - Salt Water Baths - Glass inclosed Sun Porches - Open Sun Decks atop - Delightful Cuisine - Garage on premises. - Moderate Rate Schedule.

Exclusive Pennsylvania Ave. and Boardwalk

Just Published!

Symptoms of defectlve operation easily recomnized. gllickly corrected diagrams and how-to-do-it pacts in to-do-it pacts.
this new bouk.

TELEVISION

 SERVICINGby Walter H. Buchsbaum
Get this brand new, complete handbook for sure-fire workine handbook for sure-fire working
knowledge of TV installation, maintenance and troubleshooting. Tells you step-by-step procedures for audio IF alignment. video IF alignment, aligning RF amplifiers, mixers, oscillators, etc. All possible defects classified for ready reference, thoroughly analyzed to show what is wrong and why
and what to do to correct the defect. No mathematical knowledge needed ! Practical, authoritative, up-to-the minute, the nerfect handbook for set owners. trainees, and repairmen.

USE IT 10 DAYS FREE

Coupon below brings you "Television Servicing" on FREE trial for 10 days, without obligation. Mail it NOW.

- PRENTICE-HALL, Inc., Dept. M-RE-151

70 Fifth Ave., New York 11, N. Y.
send me, for 10 DAYS' FREE TRIA
Servicing. ${ }^{-}$I will return it in ten days and pas noth-- ing-or keeb it and send $\$ 1.35$ down (plus postage) and $\%$: monthly for 9 months.

- NimE
- ADDRESA.
- cITY..
sTATE.
SAyE: Send $\$ 5.35$ with this coupon.

WWIER RADIO-TI thru" ThisPlan-

As a young man with a career to build, you may today be interested primarily in training for Radio - and perhaps for TV. But - who knows . . . you may some day have both the desire and opportunity to climb further and become an Electrical Engineer! Here, then, is a world-renowned educational plan that permits you to use your Radio training as a major stepping-stone to an even greater career.

IN 12 MONTHS...
 become a RADIO TECHNICIAN

You are trained here for functions such as Radio shop operator or Serviceman, Supervisor of service personnel, and Serviceman for Mobile Receivers and all types of Transmitters. The Radio Technician's certificate is awarded. You may then advance immediately or at any future date into courses described below.

IN 6 ADDITIONAL MONTHS you become a RADIO-TELEVISION TECHNICIAN

On completion of the Radio-TELEVISION Technician's course, you are equipped for opportunities in Television - America's fastest growing industry. You are trained for such work as Radio-TV Service-Audio, Transmitter or Communication Technician-and Broadcast Operator (upon passing FCC examination)

ALSO...your radio course is full credit foward a B.s. degree in ELECTRICAL ENGINEERING

Your Radio Technician's course, while complete in itself, is also one-third of the program necessary to achieve the Electronics major (with a minor in Electrical Power). In the final stage of this college program you receive an added, important service ... your aptitudes and desires are analyzed scientifically thus guiding you to choose specialized preparation for design or research manufacturing production - or engineering sales and management.

- Over 1500 students, from all states and 23 foreign countries, annually enroled in this 47 -year-old nonprofit school. Over 35,000 alumni. Faculty of 85 specialists. Terms open April, July, October, January.
- Military, practical or prior academic train. ing will be evaluated for advanced credit. Preparatory and refresher courses available. Laboratory training, on modern equipment, is given immediately and in each term.

Milmiliker School of Rugireering

Technical Institute - College of Electrical Engineering

$\square \square$

FREE-

Write today for
helpful
"Occupationa!
Guidance Bulletin'
If possible,
catalog. if possible, having your interest.

MILWAUKEE SCHOOL OF ENGINEERING Wis. Dept. RE-151, 1020 N. Broadway, Milwaukee. Wis. Without obligation, rush following: $\square 1951$ Catalog: Occupational Guidance Bulletin on \square Radio \square Telerision \square Electrical Engineering (Electronics) \square Flectrical Service $\square 1$ Electro Technician \square Heating Electrical Engineering (Power) Refrigeration Air Conditioning \square Welding.

RADIO SCHOOL DIRECTORY

Your Future in RADIO-TV

Your future in radio-TV begins right now, whith proper training. The Don Martin School of liadio Arts, established in 1937, offers the training you want . . . for every type of job in liadlo-TV-script writer, ant nouncer, disk fockey, newscaster, techutcian. Free joh placement serviee lor graduates. Day and night classes Write for our FREE booklet, "YoUn FUTU!R IN RADI0." Approved for veterans.

Don Martin School of Radio Arts 1655 No. Cherokee, Hollywood 28. Calif. HUdson 2328

Intensive, spectalized course including strong basis in mathernatics and electrical engineering, advanced radio theory and design, television. Modern lab. Low
tuition. Self-hely opportunitles. Also 27 -month tuition. Self-help opportunitles. Also
courses in Aeronaut eleal. Chemical, Civil, Enth courses in Aeronautleal. Chemical, Civil, Electrical Enter March. June, Sept., Dec. Catalogue. INDIANA TEGHNICAL COLLEGE

```
E) Washington Blvd., Fort Wayne 2, Indiana
```


audio engineraing school Dise. Filim Mitant
 Teleriston, mind demmethal Recordiat wort.
 hollirwood sound institute, ine. 1040-E Worth Kenmart. Hallyened 27. Cellt. spetify II Vetaran or Non-Veteria.

24:20
 Bng
 Complate Radio Engineering Course incl. Telev., U.H.F., and F.M. B.S. Degree Courses also in Civil, Elect., Mech., Chem., and

 Aero. Eng.; Bus. Adm., Acct. Visit campus, see well equipped labs. Low cost. Prep. courses. Personalized instruction. Grads successful. Founded in 1884. Enter Jan., March, June, Sept. Write for catalog.
TRI~STATE COLLEGE 2411 COLLEGE AVENUE ANGOLA, INDIANA

(- R RADIO ENGINEERIMG

FM-Television-Broadcast
Police Radio, Marine Radio, Radioo Serficing. Aria.
tion Radio and Ultra
Hish mobile applications. tion Radio and Ultra High motite applications.
Thoroush training in all branches of Radio ayd Elec-
tronics. Modern laboratories and equigment. OId estronics. Modern laboratories and equipment. Old es-
tablished school. Ample housing facilities. 7 acre campus. Small classes, enrollments limited. Our
graduates are in demand. Write for catalog. graduates are in demand. Write for
Approved for Veterans
Valparaiso technical institute
Dept. C VALPARAISO, INDIANA

TELEVISIOM

PREPARE FOR A GOOD JOB! COMMERCIAL OPERATOR (CODE) TELEVISION SERVICING BROADCAST ENGINEER Approved for Veterans SEND FOR FREE LITERATURF BALTIMORE TECHNICAL INSTITUTE 142 E Eutaw Place, Dept. C, Baltimore 17, Md.

TEEEVISITN Laboratory and theoretleal Instruction covering all technical plases of Radio FM, Television. Leads to opportunlties in TOTAL IUTIEM \$450. NO EXTRAS. Morn., Aft., of Eve. Small Weekly Parmients Approved for Veterans. Enroll Now. RADIO-TELEVISION INSTITUTE Pioneers in Television Troining Since 1938 480 Lexington Ave. 480 Lexington Ave., N. Y. 17 (46 th St- Licensed by N. Y. State

RADIO COURSES

- RADIO OPERATING CODE
- RADIO SERVICING ELECTRONICS
- F.M. TELEVISLON
- Predaration for Civilian. Maritime. Army

YMCA and Navy license requirments. \quad Write for Catalog TE
TRADE \& TECH. SCHOOL

Learm TELEVISION becriononics
 Irepare for own busl ness or a good paying Approved for Veterang SEe our large AD ON PAGE 13
 Sprayberry Academy of Radio

TELEVISION, VOLUMES V and VI, edited by Alfred N. Goldsmith, Arthur F. Van Dyck, Robert S. Burnap, Edward T. Dickey, and George M. K. Baker. Published by RCA Review, Princeton, N. J. 6 x 9 inches. Vol. V', 461 pages; Vol. VI, 422 pages. Price $\$ 2.50$ per volume.
The two volumes contain a collection of papers by RCA research workers, and cover practically all RCA's published work on the subject over the years 1947-1950. In some cases summaries are given.
The two volumes represent an originally projected Volume V, which was to cover 1947-49, but the tremendous amount of work on television (including color) during that period produced far more material than could be contained in a single volume. The period was extended to June, 1950, and two volumes were published.
RADIO ANI TV INDUSTRY RED BOOK. Replacement Parts Buyers Guide (Second Edition). Compiled and published by Howard W. Sams \& Co., Indianapolis, Ind. $11 \times 81 / 2$ inches, 623 pages. Price $\$ 3.95$.
Like the first edition which appeared in 1948, this book is designed to give the service technician in one volume instant reliable data on replacement parts. It lists parts for approximately 20,000 sets made from 1938 to 1950 .
The format is the same as for the first edition. Model numbers are listed down the left side of each left-hand page and repeated on the right side of the opposite page, leaving a 19 -inch line for listing replacement parts. Divided into seven sections: Tube Complement and Dial Light, Capacitors, Transformers, Phono Cartridges, I.F. Coils, Speakers, and Controls. The line lists the part numbers of one to four manufacturers, including the original replacement part number. Thus the part or its equivalent can be ordered from the most convenient source. The equivalent listings may be very useful in the face of parts shortages.

TV

ELECTROMAGNETIC SERVICING COURSE

Practical Shop and Laboratory Training at Largest Resident TV School in the East! AIso RADIO SERVICE \& REPAIR. F-M \& TELEVISION

Proparation for F.C.C. LICENSE EXAMS $\stackrel{\text { Approved for Veterans }}{\star} \stackrel{\star}{\star}$ VOSA EAST I3H STREET - NEW YORK 3. N.Y.

RADIO and TELEVISION Thorough Training in All Technical Phases APPROVED FOR VETERANS

RCA INSTITUTES, Ine. A Service of Radio Corporation of America
350 WEST 4TH STREET NEW YORK 14. N. Y.

NOW! become expert at RADIOTELEVISION IN 4 EASY STEPS!

Gomplete Self-Training Course Experts-Takes You By Famous PLEerts-Takes You BY SIMto Problems of Rrom Basic Theory ion, Color TV, etc.
NOW you can do ANY Rervice, or repair job like service, or repari lob like
an expert; operate fieldan expert; operate fold
testing equipment; under tand problems of TV, FM-AM transmission, etc. Step into a good-paying lob-or start your own yourself AT HOM with the McGraw - Hill and TV. 2296 Pages1611 Illustrations Complete 4 -volume course by outstanding ex.
perts. Every detail clearly explained. Over TWO THOUSAND PAGES ot step-by-step instruction.
SIXTEEN HUNDREI) "how-to-do-it" illustrations, cross-section dia $\underset{\text { grams, }}{\text { ghooting }}$ " "Troubleshooting" charts show how to diagnose any ra
dio or TV breakdown. how to repair it expertly and quickly. Pays for itself many
times over. Can autify times over Can qualify a beginner for $F C C$'s ist. Class License test; shows experienced technician
tricks.

SEND NO MONEY comise FREE for 10 dume No obligation. W'ITH Course Y y g get ABSO. whetber or not you keep trated book, "Successfu! Soldering." (Reg. price: $\$ 2.00$)
Or you may examine im10 days by checking proper boxes in coupon. Mail

The Biggest Tool Kit Value in the Whole World of Television!

 OID TV ALIGNING TOOL KIT

MADE OF UNBREAKABLE NYLON NO. TK 60
 12 Essential Tools in One Handy Kit $\$ 3^{95}$

Another JFD first... moulded of tough, unbreakable Nylon to provide the best combination of strength and durability. Each of the six tools furnishes two different tuning tips, for a total of 12 separate aligning ends to suit every TV or FM servicing adjustment. Each tool has a different color for easy identification. Packed in a handy plastic case.
Each Tool/s Available Separately As Follows:
JFD TV All-Purpose Aligning Tool; for tuners, trimmers and If transformer adjustments. No. 5-73. List, Each ... 45 e JFD TV I.F. Oscillator Aligner; for I.F. midget trans. former and oscillator adiustments. No. 5-74. List,
Each JFD IV Extra Long Aligner; for tuning nested iron cares that are difficult to reach. No. 5-78. List. Each 954
JFD TV Midget Duplex Aligner; for tight, difficult adodiustments where spoce is limited. No. 5-79. Lisf, Each ... 65 JFD IV Aligning Wrench; for K-Tron and Midget I.F. transformers. No. 5-80. List, Eoch. 75 \& JFD TV Tuning Rod; a vital necessity, extra thin and
 1

 (1)

6

MANIJFAGTURING CO., Inc. 6117 16th Ave., B'klyn 4, N. Y. 'The 'ExcIusiventess' Of JID Is The Quality Of Its Products'

Profits!

Watch for HY-GRADE'S spectacular exclusive scoop on the newest invention in COLOR TELEVISION Accessories - in next month's issue! It's your biggest money-making opportunity in TV!

WRITE FOR DETALLS NOW

Send us your name and address on a post card right now! We'll mail you the complete details about this sensational new invention on January 15th-a full 2 weeks before the ad itself appears. Then you'll be first to know all about it-and first to cash in on it!

Only HY-GRADE has this terrific new profit-maker! Don't miss this chance-of-a-lifetime to be in on the ground floorfirst in COLOR TELEVISION in your community! SEND YOUR POST CARD NOW!

Hy-Grade Electronics, inc. Dept. C, 1509 EAST NEW YORK AVE., BROOKLYN 12, N. Y.

Metlonal Distributors of Electronie Parts and Equipment

RADIO TUBES

At bargain prices

Also complete stock of radio parts af low prices Write for price list
OREGON BARGAIN SUPPLY
Box 31 La Gronde, Oregon

ADVERTISING INDEX

Aero Towers Div.
Allied Radio Corporation
Almo Radio Corporation
Alprodco, Inc.
Americon Electrical Heater
American Phenolic Corporation Amperite Company
Amplifier Corporation of America
82, 129,
Amy, Aceves \& King. Incorporated Arrow Sales
Arvedon Electric Supply Co.
Astatic Corporation
Astron Corp.
ell Telephone Laboratories
Boyce-Roche Book Company
Brook Electronics
rooks Radio Dist. Company
uuffalo Radio Supply
California Electronics and TV Inst Capitol Radio Engineering Institute Certified Television Laboratories Certified H G
Clarostat Manufacturing Company
Cleveland Institute of Radio-Electronics
Coast Electronic Supply
Color Television Laboratories
Commercial Trades Institute
Communications Equipment Company
Concord Radio Corporation
Coyne Electrical School

DeForest's Training, Incorparated 9
DuMont, Allen B. Labs. Inside Back Cover
East Coast Electronics 142
Editors \& Engineers
125, 132, 143
Ectro Products Laboratories
Electronic Measurements Company
Espey Manufacturing Company
Eureka Television \& Tube Corp.
Federated Purchaser
Feiler Engineering Company
General Electric Company
General Electronic Dist. Companyioi, io2, 103. 104
General Test Equipment Campany 131
Greylock Electronic Supply
Marvard Laboratories
Hatry and Young (Lawrence, Mass.)
Haugen Company .
Heath Company 87, 88, 89, 90, 91, 92,
Hickok Electrical Instrument Company
Hudson Specialties
Hygrade Electronics
yron Radio \& Electronics Corporation
Instructograph Company
nsuline Corporation of America
JFD Manufacturing Companyi22,
Kelsey Company (The)
La Pointe-Plascomold Corporation
Leotone Radio Corporation
ittelfuse, Incorporated
McGraw-Hill Book Compan
Macmillan Company (The)
F 14
Midway Rampa TV Corporation
Midwest Radio \& TV Corporation
National Company
National Plans Company
National Radio Institute
National Schools
Niagara Radio Supply
Ohmite Monufacturing Company
Opportunity Adlets
Oregon Bargain Supply
Prager Mfg. \& Dist. Co.
Precision Apparatus Company
Prentice-Probe Company
Progressive Electronics Company 86

Radcraft Publications
Radiart Corp
Radio City Products
Radio Corporation of America
Radio Dealers Supply
Radio Merchandise Sale
Radio Press
Radio Publications
company, Incorporated
138
$\frac{\text { Radio Receptor Company, Incorporated } . . .}{\text { RADIO SCHOOL DIRECTORY }}$ (Pages 146-147)
Baltimore Tech. Inst. Candler System Co.
Commercial Radio Inst. Delehanty Inst.
Electronics Institute Inc.
Hollywood Sound Institute
Hollywood Technical Inst.
Indiana Technical College
Martin School, Don
Milwaukee School of Engineering
RCA Institutes
Radio-Television Institute
Sprayberry Academy of Radio
Tri-State College
YMCA Trade \& Tech
Y
Radio Specialty Manufacturing Co.
Rauland Corporation (The)
Raytheon Manufacturing Co
Red Arrow Sales
Rider. Ine., John F. (Murray Hill)
Rinehart Books, Ine. (M)
Rinehart Books, Inc. (Murray Hill)
Sams \& Company, Inc., Howard W eg Electronics
Simpson Electric Company
Smith Company, Wm. M
Soundtronics Laboratories
Sprague Products Company of Radio
Standard Transformer Corporatio
Strand Motel
Supreme Publications
Sutton's Wholesale Electronics, Bill
Swedgal Radio, Incorporated
Sylvania Electric Products
Tab
Technical Appliance Corp
Technifax
Tel-A-Ray Enterprises, Inc
Television Communications Institute
Tel-O-Tube Corp. of America
Telrex, Incorporated
Thomas Electronics
Transvision, Incorporated
Trio Manufacturing Co.
Triplett Electrical Instrument Co
Turner Company
University Loudspeakers
Weller Electric Corporation
Wells Sales Company
Wholesale Radio Parts Co.. Inc.
Wilcox \& Follett
Wind Turbine Company
Radio Electronics does not assume responsill
Radio-Electronics does not assume
bility for any errors appearing in above index.

RADIO AND TELEVISION, AN INTRODUCTION, by Giraud Chester and Garnet R. Garrison. Published by Ap-pleton-Century-Crofts, Inc. $61 / 2 \times 91 / 2$ inches, 550 pages. Price $\$ 4.75$.

This rather original book is divided into two sections: the first deals with the social aspects of radio, and the second with radio and television broadcasting from the studio and program point of view. Its dual nature is the result of a need for a college text to assist in "training students in radio skills and supplying them with a body of information about the field."
Part I begins with a survey of radio in the United States and continues with historical and topical information on programming, stations and networks, international broadcasting, advertisers and agencies, and the FCC, with a specially interesting chapter "What Constitutes the Public Interest?" The second part deals with radio and television broadcasting from the point of view of the student actor, program director, and announcer.

OUTLINE OF RADIO. TELEVISION AND RADAR, a symposium by R. S. Elven, T. J. Fielding, E. Molloy, H. E. P'enrose. C. A. Quarrington, M. G. Say, R. C. Walker and G. Windred. Published by Chemical Publishing Co., Brooklyn, N. Y. $6 \times 83 / 4$ inches, 688 pages. Price $\$ 12.00$.
As implied in the title, this is an outline, beginning with "What Is Electricity" and ending with "A Survey of Radar." The contributors are eminent in the British radio world, and the book as a whole is carefully written. The first eleven chapters apply to fundamental theory and components and there are seven dealing with receivers, their circuits and stages. The rest of the thirty-five chapters cover a cange of subjects from accumulators to direction finders.

ADVENTURE INTO THE UNKNOWN, by Laurence A. Hawkins. P'ublished by Williant Morrow \& Co., New York, N.Y. $61 / 1 / \times 91 / 2$ inches, 150 pages. I'rice \$3.50.
Adventure into the Unknown is a history of the General Electric research lahoratory at Schenectady, from its first home in the barn of the late Charles P. Steinmetz to its present group of specially designed buildings on the shore of the Mohawk, and from the GEM lamp of Willis R . Whitney to the rain-producing silver iodide crystals of Bernard Vonnegut.

The story is told by one of the laboratory staff, who for 36 years was either assistant to the director or executive engineer of the laboratory. He has an independent claim to fame as the author of the "-tron" system of naming and indicating the characteristics of vacuum tubes that de Forest humorously dubbed "Greco-Schenectady."

All the important achievements of the laboratory during the 50 years of its existence are chronicled, together with vignettes of its chief workers, for whom the author has unbounded admiration.

$\mathrm{H}_{\text {ere }}$ is all the information and practical instruction you need in order to be sure of getting the most out of any antenna system, with a minimum of testing and readjusting. It gives you-

the characteristics, dimensions, and special advantages and disadvantages andin and UHF antenas and allied equipment

NEW information on NEW types of antennas recently tested by the authors. Information heretofore un published.

Definite installation procedures:how to determine the right type of antenna for the particular site; how o locate space loops, determine sig nal strength, etc.

- Practical directions for mounting dif ferent types of antennas on different types of roofs and on window sills.
- Excellent information on transmission lines-how to minimize noise. avoid standing waves. Use of booster amplifiers and input systems.
- Clear, practical explanation of all essential principles, impedance matching. loss factors, etc. ALL the information you need on T and FM form.

Have you seen

by Bermhard Fischer
This unique handbook of problems and solutions provides completely worked-out samples of every calculation commonly required in radio, television, and industrial electronics work of all kinds. It shows you what formulas to use, what numerical values to substitute, each step in the solution of every problem. Conveniently arranged by radio topics and fully indexed so you can find the solution of any problem you encounter quickly and easily. Called "the most useful tool for radiomen this reviewer has ever seen ... recommended for the place of honor beside its natural partner the slide rule." (Radio Maintenance)

by E. M. Noll
The outstanding book on television for the serviceman. Explains in clear, non-mathematical terms the operating principles and function of every part and circuit in today's TV receivers, and the chief principles of transmission. Gives complete practical instruction in installation and alignment procedures, testing instruments and their use, adjustment and trouble-shooting, with handy trouble-shooting charts. Three large diagrams ($19 \mathrm{I} / 4 \times 13 \mathrm{I} / 4$ and $16 \times$ $91 / 4$) of RCA, GE, and Philco receivers are folded into the book. Mathematics are explained in a final chapter for those who need them.

SEE THEM ON APPROVAL

Look them over at your leisme. If jou do not find these books of ex. ceptional value to you in your work, you may return them with no fro they obligation.

The Macmillan Co.. 60 Fifth Ave., New York 11 Please send me the books checked below on 10 days' approval
Television \& FM Antenna
Guide $\$ 5.75$ (prob.)
Radio \& Television
Rathematics $\$ 6.00$
Television for Radiomen
or Radiom
$\$ 7.00$
Address

A BETIER DEAL

You demand TV
Snap On Holders Ten to a Box

No. 094025
Time saver for pigtail replacement. Snap on blown pigtail, then use regular fuse in other side. No soldering. Demand item with servicemen. Bigger TV profits.
$\$ 3.00$ per box, list

LTHELFUSE

Most used . . . by brand and by type ... RCA kinescopes are the fast-moving profit makers

$\tau_{\text {he largest and most profitable replacement business }}$ in television picture tubes comes from the types used in most television receivers . . . the Best Sellers.

RCA's types are Best Sellers. There are more of them in actual use in TV receivers than any other brand. Industry choice of these high-volume types reflects to your advantage. Inventory and stocking problems are simplified ... and you have the assurance of rapid, profitable turnover.

In addition, when you sell RCA kinescopes, you gain from customer confidence in the RCA brand... solidly established by the proved performance of RCA kinescopes in millions of television receivers.

Remember, too, that the quality and dependability of RCA kinescopes mean fewer service failures and fewer costly call-backs. There is, therefore, more profit in every RCA kinescope you sell.

Always keep in touch with your RCA Tube Distributor

ADV Plans,

Copyright Notice:

The entire contents of this CD/DVD are copyright 2014 by ADV Plans, LLC. All Rights Reserved.

Reproduction or distribution of this disk, either free or for a fee is strictly prohibited. We actively monitor and remove listings on eBay thru Vero.

You are free to copy or use individual images in your own projects, magazines,
 brochures or other school projects.

Only the sellers listed here are authorized distributors of this collection: www.theclassicarchives.com/authorizedsuppliers

Please view our other products at www.theclassicarchives.com, or our ebay stores:

[^0]: RADIO ELECTRONICS, January 195I. Volume XXII. No. 4. I'ublished monthby I ubifration gifter: firie Ave. F to G Streets. Philadelphia 22. J'a. Fintered as secand class malter Septemher ${ }^{27}$, 1948. at the nost office at possessions, Mexico, South and Central American countries. $\$ 3.50$; $\$ 6.010$ for two years; $\$ 8,10$ for three years: sincle conies 30 c . All other forbign countries $\$ 4.5 \mathrm{H}$ a year. $\$ 8.00$ for two ycais, $\$ 11.00$ for three years. Allow one MADCRAFT PUBLICATIONS. INC. Huqn Gurnshack. H'res.: M. Harvey Gernsback, Vice-Yres. : G. Aliguo, Sec's. 'ontents copyright, 19tio. by kaderaft Elablications. Ine. Text and iliustrations must not be reproduced without
 EDITORIAL and ADVERTISING OFFICES, 25 West Broadway, New York 7, N. Y. Tel. REctor 2-9690.
 Ralph W. Harker, 1127 Wilshire Blxt. Tel. MA B-1271. San Franciseo: Ralph W. Harker, 58y Market st. . Nel.
 Natal. ['niversal book Agency, Johanneshurg. Middle East: Stelmatzky Middle Fast Agency, Jerusalem. India: Broadway

[^1]: * See "The Radio-Controlled Television Plane" by H. Gernsback, in The Experimenter, page 22, November, 1924.

[^2]: Special notes:
 Type numbers of rectangular tubes are in light face type.

 Capacitance of inner and outer coatings of some glass tubes may vary widely because of differences in the width of the band and the conductivity of the coatings
 Some manufacturers give only the diagonal de flection angle of rectangular picture tubes. Because the horizontal deflection angle is somewhat. less than the horizontal deflection angle is somewhat less tha the diagonal some 70° yokes will overdrive the tube For this reason, the horizontal deflection angle is given for all types of tubes.
 The 7AP4, 9AP4, I2AP4, and I2PC4 have 2.5 -volt,

[^3]: *Technical Institute-Temple University

[^4]: 1 Rectangular types-deflection measured diagonally,
 1 Rectangular types-deflection measured diagonally,
 Require second high-voltage filter capacitor. Glass types have no outer conductive coating. Letter A added to the above type
 which all have filter face plates.

[^5]: *Publisher, Toute la Radio. Paris. France

[^6]: *Author: Giant Brains

[^7]: Specialized Service Men
 CRYSTALS FOR LESS! If you are servicing aircraft, marine, police, mobile or industrial radio you may be
 entitied to our SPECIAL DISCOUNT on highest quality quartz control units. Write for full on highest quality mean money to you! Write for full details. . . it will
 RADIO SPECIALTY MFG CO. Dept. RE 2023 S.E. Sixth Ave. Portland 14, Oregon

